Open Access. Powered by Scholars. Published by Universities.®

Aerodynamics and Fluid Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 23 of 23

Full-Text Articles in Aerodynamics and Fluid Mechanics

Computational Analysis Of Steady Hypersonic Flow Fields Of Nasa Benchmark Geometries Utilizing Ansys Fluent, Aidan Murphy May 2023

Computational Analysis Of Steady Hypersonic Flow Fields Of Nasa Benchmark Geometries Utilizing Ansys Fluent, Aidan Murphy

McKelvey School of Engineering Theses & Dissertations

The Hypersonic International Flight Research Experimentation (HIFiRE) program explores and advances hypersonic aerospace systems by developing a multitude of test flight geometries and conducting experimental test flights to obtain data for use in validation of computational models and results. This study focuses on computational validation of heat flux, and calculation of static pressure profiles, skin friction coefficient profiles, and flow contours. The flow fields studied are for Mach number 7.18 and angles of attack (α) of 0° & 2°. These flow fields include many compressible flow features such as an expansion wave at the intersection of the cone and flat …


Application Of Direct Simulation Monte Carlo Method To Computation Of Rf Signal Degradation During Hypersonic Flight, Andrew Derubertis Mar 2023

Application Of Direct Simulation Monte Carlo Method To Computation Of Rf Signal Degradation During Hypersonic Flight, Andrew Derubertis

McKelvey School of Engineering Theses & Dissertations

In order to further understand the hypersonic blackout problem, the first step is to investigate models to quantify signal degradation and begin implementing these models to representative plasma sheath and flow data. This research is the first attempt at implementing a model to predict RF signal degradation through the plasma sheath surrounding the hypersonic air vehicle. The investigation is performed using a Direct Simulation Monte Carlo (DSMC) based flow solver. The dsmcFoam solver in the OpenFoam library is used to simulate the flow around hypersonic bodies to obtain flow field properties, most importantly the electron number density profile, to aid …


Computational Fluid Dynamics Modeling Of Hemodialysis In Patients With An Arteriovenous Fistula, Maximilian Roth Dec 2022

Computational Fluid Dynamics Modeling Of Hemodialysis In Patients With An Arteriovenous Fistula, Maximilian Roth

McKelvey School of Engineering Theses & Dissertations

With the advent of arteriovenous fistula (AVF) for use in hemodialysis, the anastomosis built for such use has become a central point of the study to understand the flow and wall shear stresses in such a system since very large wall shear stresses can lead to arterial/vein rupture. Considering the commonly used creation site of an anastomosis as connecting the radial artery to the cephalic vein, a model is created to calculate the wall shear stresses across various components of the system. The model depicts a connection of the specified vein and artery bridged together allowing the increase in blood …


Validation And Verification Of The Wray-Agarwal Turbulence And Algebraic Transition Models For 2d External Airfoil Flows, Dean Ryan-Simmons Oct 2022

Validation And Verification Of The Wray-Agarwal Turbulence And Algebraic Transition Models For 2d External Airfoil Flows, Dean Ryan-Simmons

McKelvey School of Engineering Theses & Dissertations

Validation and verification benchmark test cases are employed in computational fluid dynamics (CFD) to determine the best practices in application of various CFD tools. These cases focus on the geometry modeling, mesh generation, numerical algorithms, and turbulence models to ensure consistent and accurate numerical simulation of physical phenomena. Assessing model accuracy is essential to identify areas of improvement in various turbulence models. Flow past several symmetric NACA airfoils, namely NACA 0012, NACA 0015 and NACA 0018 are standard test cases for validating and evaluating turbulence models’ accuracy since the experimental data is available for these airfoils. Available wind tunnel data …


Foundations For Finite-State Modelling Of A Two-Dimensional Airfoil That Reverses Direction, Jake Michael Oscar Welsh Aug 2022

Foundations For Finite-State Modelling Of A Two-Dimensional Airfoil That Reverses Direction, Jake Michael Oscar Welsh

McKelvey School of Engineering Theses & Dissertations

Current 3-D finite-state wake models are incapable of simulating a maneuver in which the sign of the free-stream velocity changes direction and the rotor enters its own wake -- as might occur in the case of a helicopter which ascends and then descends. It is the purpose of this work to create a 2-D finite-state wake model which is capable of handling changes in free-stream direction as a precursor to development of a 3-D model that can do the same.

The 2-D finite-state model used for reentry modifications is an existing model created by Peters, Johnson, and Karunamoorthy. By the …


Numerical Simulation Of Flow Past An Airfoil With Ice Accretion On Leading Edge, Boyu Wang May 2021

Numerical Simulation Of Flow Past An Airfoil With Ice Accretion On Leading Edge, Boyu Wang

McKelvey School of Engineering Theses & Dissertations

The focus of this research is on aerodynamic simulation of flow past NACA 23012 airfoil with clean surface and with ice accretion on its leading edge by using the commercial CFD solver ANSYS Fluent. Reynolds-Averaged Navier-Stokes (RANS) computations are performed using Spalart-Allmaras (SA) and Wray-Agarwal (WA) turbulence models. ANSYS mesh package ICEM is used to model the geometry and generate the mesh. The computations are performed at 0, 2, 4, 6, 8, 10, and 12 degrees angle of attack which are compared with experimental data. For the case of ice accretion at the leading edge, the physical geometry becomes more …


Foundations For The Coupled Inflow And Structural Dynamics Of Multi-Rotor Helicopters, Ethan Genter May 2021

Foundations For The Coupled Inflow And Structural Dynamics Of Multi-Rotor Helicopters, Ethan Genter

McKelvey School of Engineering Theses & Dissertations

In this work, the Peters-Seidel finite-state model is expanded to calculate the coupled inflow and rotor dynamics of tandem rotor configurations. This establishes the foundation for a more complete multi-rotor, dynamic inflow model with finite-state methods. The derivation presented in this work is for the general case of two rotors in the same plane, overlapping and separated to varying degrees. It is the purpose of this work to study the unique and interesting dynamics and characteristics of various tandem systems heretofore not studied in a dynamic system. Moreover, it is the goal of this work to investigate how these systems …


Development And Application Of Elliptic Blending Lag K-Omega Sst Standard And Wall-Distance-Free Turbulence Model, Wenjie Shang May 2020

Development And Application Of Elliptic Blending Lag K-Omega Sst Standard And Wall-Distance-Free Turbulence Model, Wenjie Shang

McKelvey School of Engineering Theses & Dissertations

In recent decades, Computational Fluid Dynamics (CFD) has become the most widely used technology to understand the fundamental complex fluid dynamics of turbulent flows as well as for modeling of turbulent flows in industrial applications. In industrial applications, the widely used methodology is to solve Reynolds-Average Navier-Stokes Equations (RANS) equations in conjunction with a turbulence model since it strikes a balance between accuracy and computational cost compared to other high fidelity approaches namely the Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS), There are a large number of turbulence models proposed in past five decades, majority of them are …


Cfd Modeling Of Vertical Axis Wind Turbine Arrays Using Actuator Cylinder Theory, Cory Schovanec May 2020

Cfd Modeling Of Vertical Axis Wind Turbine Arrays Using Actuator Cylinder Theory, Cory Schovanec

McKelvey School of Engineering Theses & Dissertations

The goal of this thesis is to analyze the flow field and power generation from a vertical axis wind turbine (VAWT) by extending the Actuator Cylinder Model to include the viscous effects. Turbulent flow effects in the Actuator Cylinder Model are modeled by solving the Reynolds-Averaged Navier-Stokes (RANS) equations with the Spalart-Allmaras (SA) turbulence model in ANSYS FLUENT. A study is performed to establish mesh independence of the solutions. Numerical solutions on a fine mesh are compared to existing theoretical results based on inviscid theory for a series of flow conditions and turbine sizes. Similar trends in the present turbulent …


Potential Of Hydrodynamic Metamaterial Cloak For Drag Reduction, Rong Zou May 2020

Potential Of Hydrodynamic Metamaterial Cloak For Drag Reduction, Rong Zou

McKelvey School of Engineering Theses & Dissertations

Metamaterials are rationally designed artificial materials composed of tailored functional building blocks densely packed into an effective material. While metamaterials historically are primarily thought to be associated with negative index of refraction and invisibility cloaking in electromagnetism or optics, it turns out that the simple metamaterial concept also applies to many other areas of physics namely the thermodynamics, classical mechanics including elastostatics, acoustics, fluid dynamics and elastodynamics, and in principle also to the quantum mechanics. The goal of this thesis is to introduce and evaluate the potential of a hydrodynamic metamaterial cloak for drag reduction of objects in viscous flow. …


Computational Fluid Dynamics Analysis Of Inverted, Multi-Element Airfoils In Ground Effect, Michael Grabis, Ramesh K. Agarwal Aug 2019

Computational Fluid Dynamics Analysis Of Inverted, Multi-Element Airfoils In Ground Effect, Michael Grabis, Ramesh K. Agarwal

McKelvey School of Engineering Theses & Dissertations

Formula SAE cars are formula-styled race cars designed to race on an autocross circuit. The autocross circuit is mostly comprised of turning sections as well as a limited amount of straight sections for passing other cars. Highly competitive cars in the competition implement aerodynamic devices to generate negative lift for the race car. This negative lift, or downforce, increases the amount of traction between the race car’s tires and the ground ultimately allowing the drivers to turn at faster speeds. Commonly used aerodynamic devices are a front and rear wing; the wing cross sections are defined by configurations of multiple …


Computation Of Flow Fields Due To Single- And Twin-Jet Impingement, Xiang Zhang May 2019

Computation Of Flow Fields Due To Single- And Twin-Jet Impingement, Xiang Zhang

McKelvey School of Engineering Theses & Dissertations

The thesis consists of two parts. The first part focuses on numerical simulations and their comparison with experimental data for single-jet impingement on ground. Angles between the axisymmetric jet and impingement surface considered are 15, 30 and 90 degree. It is shown that both the k-epsilon and Wray-Agarwal (WA) model can predict the flow fields in good agreement with the experimental results. The second part extends the first part to twin-jet normal impingement on the ground. It focuses on numerical simulation of fountains formed by the twin-jet impingement. The fountains can be normal straight upward when the two jets are …


Development Of A One-Equation Turbulence Model Based On K-Ε Closure And Its Extension For Computing Transitional Flows By Including An Intermittency Transport Equation, Cheng Peng May 2019

Development Of A One-Equation Turbulence Model Based On K-Ε Closure And Its Extension For Computing Transitional Flows By Including An Intermittency Transport Equation, Cheng Peng

McKelvey School of Engineering Theses & Dissertations

No abstract provided.


Validation Of Cfd Simulations For Hypersonic Flow Over A Yawed Cone, Julian Cecil May 2018

Validation Of Cfd Simulations For Hypersonic Flow Over A Yawed Cone, Julian Cecil

McKelvey School of Engineering Theses & Dissertations

This study aims to numerically simulate the wind tunnel results for hypersonic flow over a circular cone of semi-apex angle of 10 degrees yawed from 0° to 20° using the commercial computational fluid dynamics software ANSYS Fluent. The ANSYS workbench is used to create the 10° semi-apex circular cone with a shock aligned structured mesh of 3.05 million cells surrounding the cone. Simulation boundary conditions for pressure and temperature in the far field correspond to Tracy’s wind tunnel experiment at Cal Tech. The six simulations cases are conducted for yaw angles of 0, 8, 12, 16, 20 and 24 degrees. …


Aerodynamics And Shock Buffet Of A Transonic Airfoil In Ground Effect, Boshun Gao May 2017

Aerodynamics And Shock Buffet Of A Transonic Airfoil In Ground Effect, Boshun Gao

McKelvey School of Engineering Theses & Dissertations

No abstract provided.


Aerodynamics And Vortex Structures Of A Flapping Airfoil In Forward Flight In Proximity Of Ground, Hang Li May 2017

Aerodynamics And Vortex Structures Of A Flapping Airfoil In Forward Flight In Proximity Of Ground, Hang Li

McKelvey School of Engineering Theses & Dissertations

The traditional flapping wing high lift mechanism research mainly focuses on the wing in unbounded flow. However, the real insect flight includes not only the unbounded flow field but also the near-surface flight. Therefore, research on near-surface flight can help reveal the high-lift mechanism of insect flight and should also be beneficial to the research on Micro-Air-Vehicles (MAV). In this thesis, the flow fields of an airfoil in hover and forward flight are simulated in the presence of ground by newly available function of “dynamic meshing” in ANSYS Fluent is employed. The characteristics of aerodynamics, pressure distribution, and vortex structure …


Design And Computational Fluid Dynamics Analysis Of An Idealized Modern Wingsuit, Maria E. Ferguson May 2017

Design And Computational Fluid Dynamics Analysis Of An Idealized Modern Wingsuit, Maria E. Ferguson

McKelvey School of Engineering Theses & Dissertations

The aerodynamics of a modern wingsuit has been the subject of very few detailed scientific studies to date. The prevailing design process remains the dangerous “sew and fly” method, in which designs are tested when they are first flown. This study utilizes Computational Fluid Dynamics (CFD) tools to analyze the flow field and aerodynamics of an idealized wingsuit, which is designed using Computer-Aided Design (CAD) modeling. The 3D CAD software Autodesk Inventor is used to create the wingsuit model, which is designed with a Gottingen 228 airfoil cross-section and a relatively large planform of aspect ratio 1.3. The commercial flow …


Uncertainty Quantification Of Turbulence Model Closure Coefficients On Openfoam And Fluent For Mildly Separated Flows, Ike Witte May 2017

Uncertainty Quantification Of Turbulence Model Closure Coefficients On Openfoam And Fluent For Mildly Separated Flows, Ike Witte

McKelvey School of Engineering Theses & Dissertations

In this thesis, detailed uncertainty quantification studies focusing on the closure coefficients of eddy-viscosity turbulence models for several flows using two CFD solvers have been performed. Three eddy viscosity turbulence models considered are: the one-equation Spalart-Allmaras (SA) model, the two-equation Shear Stress Transport (SST) k-ω model, and the one-equation Wray-Agarwal (WA) model. OpenFOAM and ANSYS Fluent are used as flow solvers. Uncertainty quantification analyses are performed for subsonic flow over a flat plate, subsonic flow over a backward-facing step, and transonic flow past an axisymmetric bump. In the case of flat plate, coefficients of pressure, lift, drag, and skin friction …


Numerical Study Of The Aerodynamics Of Dlr-F6 Wing-Body In Unbounded Flow Field And In Ground Effect, Ning Deng May 2017

Numerical Study Of The Aerodynamics Of Dlr-F6 Wing-Body In Unbounded Flow Field And In Ground Effect, Ning Deng

McKelvey School of Engineering Theses & Dissertations

The main focus of this thesis is on the simulation of flow past a three-dimensional wing-body configuration (DLR-F6) in ground effect; a complex 3D wing-body configuration in ground effect has never been analyzed in the aerodynamics literature to date. For the purpose of validation of the simulation approach, computations are performed for the DLR-F6 wing-body in unbounded flow and are compared with the experimental data. The commercial CFD solver ANSYS FLUENT is employed for computations. Compressible Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with Spalart-Allmaras (SA) and - Shear Stress Transport (SST) turbulence models are solved. The validated code is employed …


Shape Optimization Of Supersonic Bodies To Reduce Sonic Boom Signature, Junhui Li Aug 2016

Shape Optimization Of Supersonic Bodies To Reduce Sonic Boom Signature, Junhui Li

McKelvey School of Engineering Theses & Dissertations

In recent years there has been resurgence of interest by aerospace industry and NASA in supersonic transport aircraft. In recent studies, the emphasis has been on shape optimization of supersonic plane to reduce the acoustic signature of sonic boom resulting from the supersonic aircraft at high altitude in cruise flight. Because of the limitations of in-flight testing and cost of laboratory scale testing, CFD technology provides an attractive alternative to aid in the design and optimization of supersonic vehicles. In last decade, the predictive capability of CFD technology has significantly improved because of substantial increase in computational power, which allows …


Evaluation Of Various Turbulence Models For Shock-Wave Boundary Layer Interaction Flows, Francis K. Acquaye Aug 2016

Evaluation Of Various Turbulence Models For Shock-Wave Boundary Layer Interaction Flows, Francis K. Acquaye

McKelvey School of Engineering Theses & Dissertations

Despite the modeling capabilities of current computational fluid dynamics (CFD), there still exist problems and inconsistencies in simulating fluid flow in certain flow regimes. Most difficult are the high-speed transonic, supersonic and hypersonic wall-bounded turbulent flows with small or massive regions of separation. To address the problem of the lack of computational accuracy in turbulence modeling, NASA has established the Turbulence Modeling Resource (TMR) website and has issued the NASA 40% Challenge. The aim of this challenge is to identify and improve/develop turbulence and transition models as well as numerical techniques to achieve a 40% reduction in the predictive error …


The Effects Of Rarefaction And Thermal Non-Equilibrium On A Blunt Body And A Bicone In Hypersonic Flow And Their Shape Optimization For Reducing Both Drag And Heat Transfer, Samuel Gardner Jan 2016

The Effects Of Rarefaction And Thermal Non-Equilibrium On A Blunt Body And A Bicone In Hypersonic Flow And Their Shape Optimization For Reducing Both Drag And Heat Transfer, Samuel Gardner

McKelvey School of Engineering Theses & Dissertations

Design of space vehicles pose many challenging problems due to their hypersonic speeds since they need to travel through different flow regimes due to changes in the density of the atmosphere with altitude. Some of the key characteristics associated with hypersonic flow are extremely high temperatures and heat transfer to the wall of the spacecraft. At these temperatures, the assumption of thermal equilibrium is no longer valid and the effect of rotational non-equilibrium must be included in the modeling of diatomic gas flow. This thesis employs the Navier-Stokes equations, which are modified to include a rotational non-equilibrium relaxation model to …


Application Of Wray-Agarwal Model To Turbulent Flow In A 2d Lid-Driven Cavity And A 3d Lid-Driven Box, Hakop J. Nagapetyan Aug 2015

Application Of Wray-Agarwal Model To Turbulent Flow In A 2d Lid-Driven Cavity And A 3d Lid-Driven Box, Hakop J. Nagapetyan

McKelvey School of Engineering Theses & Dissertations

In this thesis, various turbulence models are used for simulating internal vortical flow, both turbulent and laminar, with large recirculation by considering the flow in a 2-D lid-driven square cavity and a 3-D lid driven cubic box. The accuracy of the newly developed Wray-Agarwal (WA) one equation turbulence model is compared against two well-known industry standard turbulence models; the Spalart-Allmaras (SA) and the Shear-Stress-Transport (SST) k-ω models. The simulations are performed by numerically solving the Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with WA, SA and SST k-ω models and comparing the results with the available experimental data and Large Eddy …