Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 47

Full-Text Articles in Engineering

Refinement And Performance Analysis Of The Stepped Frequency Microwave Radiometer In Extra Tropical Cyclone Conditions, Jezabel Vilardell Sanchez Nov 2023

Refinement And Performance Analysis Of The Stepped Frequency Microwave Radiometer In Extra Tropical Cyclone Conditions, Jezabel Vilardell Sanchez

Doctoral Dissertations

The Stepped Frequency Microwave Radiometer (SFMR) is a key instrument for estimation of ocean surface wind speed and rain rate in tropical and extra-tropical cyclones research. Through the observed brightness temperature (TB) over a range of six C-band frequencies, the SFMR derives these key parameters used by hurricane specialists to issue watches and warnings. The information gathered with this instru- ment is also pivotal for post-storm studies and satellite calibrations. Currently, the SFMR requires an average time of 5-10 seconds of averaging to cycle through the six di↵erent frequency channels, so in regions with strong wind/rain gradients such as the …


Security Of Hardware Accelerators In Multi-Tenant Fpga Environments, Shayan Moini Feb 2023

Security Of Hardware Accelerators In Multi-Tenant Fpga Environments, Shayan Moini

Doctoral Dissertations

Field-programmable gate arrays (FPGAs) play an important role in the acceleration of computationally expensive algorithms for machine learning, aerospace, and ASIC prototyping. The emergence of FPGAs in the cloud (cloud FPGAs) has accelerated FPGA adoption in various applications due to their low initial cost and the ability to quickly prototype a design. Multi-tenancy, in which multiple users execute circuitry in the same FPGAs simultaneously with logical isolation, reduces cloud FPGA usage cost and increases FPGA utilization. Multi-tenancy introduces new security challenges, such as remote side-channel and fault injection attacks, that cannot be addressed with traditional countermeasures against attacks. In this …


Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


X-Band Phased-Array Weather-Radar Polarimetry Testbed, William Heberling Iv May 2022

X-Band Phased-Array Weather-Radar Polarimetry Testbed, William Heberling Iv

Doctoral Dissertations

Phased-array weather radar have potential to replace reflector dish radar in major weather radar networks such as NEXRAD, providing faster update times and greater scan flexibility. However, the use of electronic scanning introduces polarization errors on weather radar measurables, requiring polarimetric bias calibration. The sources of polarimetric bias have been described theoretically, but experimental verification is still limited. Additionally, no standard method of calibration for polarimetric bias exists for phased-arrays. Therefore, the University of Massachusetts Amherst (UMass) presents a fully operational X-Band phased-array weather radar polarimetric testbed. The testbed evaluates the calibration of a planar dual-polarization X-band phased-array radar through …


Planar Ultra-Wideband Modular Antenna (Puma) Arrays For High-Volume Manufacturing On Organic Laminates And Bga Interfaces, James R. Lacroix Mar 2022

Planar Ultra-Wideband Modular Antenna (Puma) Arrays For High-Volume Manufacturing On Organic Laminates And Bga Interfaces, James R. Lacroix

Masters Theses

This work proposes wideband and broadband Planar Ultra-wideband Modular Antenna (PUMA) arrays designed to improve cost and reliability for high production volume commercial and military applications. The designs feature simplified PCB stack-ups with high dielectric constant (Dk) dimensionally stable materials to improve the manufacturing cost and yield. Additionally, the packages use ball grid array (BGA) interconnects, commonly used in digital electronics, for simple solder reflow integration with radio frequency (RF) electronics. While high Dk materials present practical manufacturing benefits, theoretical background will show how and why PUMA arrays lose frequency bandwidth and scan volume with high Dk materials. Further, a …


Silicon Germanium Bicmos Integrated Circuits For Scalable Cryogenic Sensing Applications, Mohsen Hosseini Mar 2022

Silicon Germanium Bicmos Integrated Circuits For Scalable Cryogenic Sensing Applications, Mohsen Hosseini

Doctoral Dissertations

This dissertation is focused on an investigation of BiCMOS cryogenic low noise amplifiers (LNAs) based on Silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) for simultaneous low noise and low power design and also taking advantage of CMOS circuitry for adding flexibility to the LNA design. Cryogenic LNAs' scalability challenges are discussed and addressed in the dissertation. To achieve that, first, HBTs of three state-of-the-art technologies are characterized and modeled at cryogenic temperature. It is shown that SiGe HBT provides a promising compromise of noise temperature, power consumption, and bandwidth. Moreover, a scalable on-chip approach is proposed and verified for biasing of …


Sustainable Computing - Without The Hot Air, Noman Bashir, David Irwin, Prashant Shenoy, Abel Souza Jan 2022

Sustainable Computing - Without The Hot Air, Noman Bashir, David Irwin, Prashant Shenoy, Abel Souza

Publications

The demand for computing is continuing to grow exponentially. This growth will translate to exponential growth in computing's energy consumption unless improvements in its energy-efficiency can outpace increases in its demand. Yet, after decades of research, further improving energy-efficiency is becoming increasingly challenging, as it is already highly optimized. As a result, at some point, increases in computing demand are likely to outpace increases in its energy-efficiency, potentially by a wide margin. Such exponential growth, if left unchecked, will position computing as a substantial contributor to global carbon emissions. While prominent technology companies have recognized the problem and sought to …


A Moment In The Sun: Solar Nowcasting From Multispectral Satellite Data Using Self-Supervised Learning, Akansha Singh Bansal, Trapit Bansal, David Irwin Jan 2022

A Moment In The Sun: Solar Nowcasting From Multispectral Satellite Data Using Self-Supervised Learning, Akansha Singh Bansal, Trapit Bansal, David Irwin

Publications

ABSTRACT

Solar energy is now the cheapest form of electricity in history. Unfortunately,

signi.cantly increasing the electric grid’s fraction of

solar energy remains challenging due to its variability, which makes

balancing electricity’s supply and demand more di.cult. While

thermal generators’ ramp rate—the maximum rate at which they

can change their energy generation—is .nite, solar energy’s ramp

rate is essentially in.nite. Thus, accurate near-term solar forecasting,

or nowcasting, is important to provide advance warnings to

adjust thermal generator output in response to variations in solar

generation to ensure a balanced supply and demand. To address the

problem, this paper develops a …


Thermoelectric Transport In Disordered Organic And Inorganic Semiconductors, Meenakshi Upadhyaya Jul 2021

Thermoelectric Transport In Disordered Organic And Inorganic Semiconductors, Meenakshi Upadhyaya

Doctoral Dissertations

The need for alternative energy sources has led to extensive research on optimizing the conversion efficiency of thermoelectric (TE) materials. TE efficiency is governed by figure-of-merit (ZT) and it has been an enormously challenging task to increase ZT > 1 despite decades of research due to the interdependence of material properties. Most doped inorganic semiconductors have a high electrical conductivity and moderate Seebeck coefficient, but ZT is still limited by their high lattice thermal conductivity. One approach to address this problem is to decrease thermal conductivity by means of alloying and nanostructuring, another is to consider materials with an inherently low …


Electro-Thermal Transport In Two-Dimensional Materials And Their Heterostructures, Arnab K. Majee Jun 2021

Electro-Thermal Transport In Two-Dimensional Materials And Their Heterostructures, Arnab K. Majee

Doctoral Dissertations

”Smaller is better” is the mantra that has driven semiconductor industry for the past 50 years. The on-going quest for faster electronic switching, higher transistor density, and better device performance, has been driven by a self-fulfilling prophecy popularly known as Moore’s law, according to which the number of transistors per unit area of a chip doubles itself approximately every two years. A modern smartphone has about 8 billion transistors, which is as large as current earth’s population. Although each transistor dissipates negligible power, but the collective power dissipation from all the transistors in an electronic gadget and inefficient heat removing …


Addressing Security Challenges In Embedded Systems And Multi-Tenant Fpgas, Georgios Provelengios Apr 2021

Addressing Security Challenges In Embedded Systems And Multi-Tenant Fpgas, Georgios Provelengios

Doctoral Dissertations

Embedded systems and field-programmable gate arrays (FPGAs) have become crucial parts of the infrastructure that supports our modern technological world. Given the multitude of threats that are present, the need for secure computing systems is undeniably greater than ever. Embedded systems and FPGAs are governed by characteristics that create unique security challenges and vulnerabilities. Despite their array of uses, embedded systems are often built with modest microprocessors that do not support the conventional security solutions used by workstations, such as virus scanners. In the first part of this dissertation, a microprocessor defense mechanism that uses a hardware monitor to protect …


Vpeak: Exploiting Volunteer Energy Resources For Flexible Peak Shaving, Phuthipong Bovornkeeratiroj, John Wamburu, David Irwin, Prashant Shenoy Jan 2021

Vpeak: Exploiting Volunteer Energy Resources For Flexible Peak Shaving, Phuthipong Bovornkeeratiroj, John Wamburu, David Irwin, Prashant Shenoy

Publications

Traditionally, utility companies have employed demand response for large loads or deployed centralized energy storage to alleviate the effects of peak demand on the grid. The advent of Internet of Things (IoT) and the proliferation of networked energy devices have opened up new opportunities for coordinated control of smaller residential loads at large scales to achieve similar benefits. In this paper, we present VPeak, an approach that uses residential loads volunteered by their owners for coordinated control by a utility for grid optimizations. Since the use of volunteer resources comes with hard limits on how frequently they can be used …


Experimental Study Of Microwave Attenuation In A Compartment Fire, Sang Gi Hong, Hakjune Lee, Hoesung Yang, Junho Jin, Hyesun Lee, Kangbok Lee Jan 2021

Experimental Study Of Microwave Attenuation In A Compartment Fire, Sang Gi Hong, Hakjune Lee, Hoesung Yang, Junho Jin, Hyesun Lee, Kangbok Lee

Electrical and Computer Engineering Faculty Publication Series

In this letter, we show the experimental results of microwave attenuation characteristics for representative communication frequencies (UHF, public safety long-term evolution [PSLTE], LoRa, Wi-Fi, and LTE) in a compartment fire. We used kerosene, lumber, and urethane foam as fuels, which can be easily found in homes, and measured the signal intensity with three antenna heights to investigate the effect of the flame and smoke. In the compartment environment, the ionized particles were the dominant attenuation factor of the signals. Furthermore, measurements revealed that the attenuation depends on frequencies and fuel types. In particular, large attenuation was observed at particular frequencies …


Cloud And Edge Computation Offloading For Latency Limited Services, Ivana Kovacevic, Erkki Harjula, Savo Glisic, Beatriz Lorenzo, Mika Ylianttila Jan 2021

Cloud And Edge Computation Offloading For Latency Limited Services, Ivana Kovacevic, Erkki Harjula, Savo Glisic, Beatriz Lorenzo, Mika Ylianttila

Electrical and Computer Engineering Faculty Publication Series

Multi-access Edge Computing (MEC) is recognised as a solution in future networks to offload computation and data storage from mobile and IoT devices to the servers at the edge of mobile networks. It reduces the network traffic and service latency compared to passing all data to cloud data centers while offering greater processing power than handling tasks locally at terminals. Since MEC servers are scattered throughout the radio access network, their computation capacities are modest in comparison to large cloud data centers. Therefore, offloading decision between MEC and cloud server should minimize the usage of the resources while maximizing the …


Time-Difference Circuits: Methodology, Design, And Digital Realization, Shuo Li Oct 2019

Time-Difference Circuits: Methodology, Design, And Digital Realization, Shuo Li

Doctoral Dissertations

This thesis presents innovations for a special class of circuits called Time Difference (TD) circuits. We introduce a signal processing methodology with TD signals that alters the target signal from a magnitude perspective to time interval between two time events and systematically organizes the primary TD functions abstracted from existing TD circuits and systems. The TD circuits draw attention from a broad range of application fields. In addition, highly evolved complementary metal-oxide-semiconductor (CMOS) technology suffers from various problems related to voltage and current amplitude signal processing methods. Compared to traditional analog and digital circuits, TD circuits bring several compelling features: …


The Umass Experimental X-Band Radar (Umaxx): An Upgrade Of The Casa Ma-1 To Support Cross-Polarization Measurements, Jezabel Vilardell Sanchez Aug 2019

The Umass Experimental X-Band Radar (Umaxx): An Upgrade Of The Casa Ma-1 To Support Cross-Polarization Measurements, Jezabel Vilardell Sanchez

Masters Theses

Ground-based radars are instruments commonly used to surveil the precipitation climate of the surrounding areas. Weather events are characterized by collecting backscatter data and analyzing computed products such as the Reflectivity Factor, the Doppler Velocity, the Spectrum Width, the Differential Reflectivity, the Co-polar Correlation Coefficient and the Differential Propagation Phase. The ability of the radar to transmit different polarization waves, such as horizontal and vertical polarization, allow for further analysis of the weather given the capability to perform co-polar and cross-polar measurements. The Linear Depolarization Ratio is another computed product based on the difference in power between the co-polarized and …


A Discrete-Time Technique For Linearity Enhancement Of Wideband Receivers, Mohammad Ghadiri Sadrabadi Jul 2019

A Discrete-Time Technique For Linearity Enhancement Of Wideband Receivers, Mohammad Ghadiri Sadrabadi

Doctoral Dissertations

A new signal processing technique is introduced to enhance the linearity performance of wideband radio frequency (RF) receivers. The proposed technique combines the advancements in mixer first architectures with a library of binary sequences as local oscillator signals to enable wide instantaneous bandwidth and high linearity for the RF receiver. To do so, N-bit pseudo-random-binary-sequences (PRBS) are used as local oscillator signals. The RF input signal is multiplied with the PRBS at the mixer and then averaged over the full sequence. This in effect reduces the amplitude of the signal and improves the overall linearity of the system. In order …


Energy Efficiency Of Computation In All-Spin Logic: Projections And Fundamental Limits, Zongya Chen Mar 2019

Energy Efficiency Of Computation In All-Spin Logic: Projections And Fundamental Limits, Zongya Chen

Masters Theses

Built with nanomagnets, a spintronic device called the all-spin logic (ASL) device carries information with only spin currents, resulting in a low power supply--10 mV. This voltage is 100 times smaller than the conventional CMOS devices (usually 0.8~1V). The potential for improved energy efficiency made possible by the low operating voltage of ASL makes it one of the most promising devices among its post-CMOS competitors.

The basic working principles of ASL device are introduced in this thesis and two complementary approaches to studying energy efficiency of computation are applied to a common set of ASL circuits: (1) a circuit simulation …


Silicon-Germanium Heterojunction Bipolar Transistors For Large-Scale Low-Power Cryogenic Sensing Systems, Shirin Montazeri Nov 2018

Silicon-Germanium Heterojunction Bipolar Transistors For Large-Scale Low-Power Cryogenic Sensing Systems, Shirin Montazeri

Doctoral Dissertations

Cryogenic low noise amplifiers (LNAs) are one of the key components in many emerging applications such as radio astronomy or quantum computing in which a weak incoming signal needs to be read out. There have been extensive studies on the feasibility of leveraging silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) to implement cryogenic LNAs in the past. The deployment of such LNAs in the future large-scale systems in radio astronomy or quantum computing is contingent upon the possibility of developing LNAs with reduced DC power dissipation to enable the cooling of a large number of array elements inside a cryogenic cooler. …


On-Chip Communication And Security In Fpgas, Shivukumar Basanagouda Patil Oct 2018

On-Chip Communication And Security In Fpgas, Shivukumar Basanagouda Patil

Masters Theses

Innovations in Field Programmable Gate Array (FPGA) manufacturing processes and architectural design have led to the development of extremely large FPGAs. There has also been a widespread adaptation of these large FPGAs in cloud infrastructures and data centers to accelerate search and machine learning applications. Two important topics related to FPGAs are addressed in this work: on-chip communication and security. On-chip communication is quickly becoming a bottleneck in to- day’s large multi-million gate FPGAs. Hard Networks-on-Chip (NoC), made of fixed silicon, have been shown to provide low power, high speed, flexible on-chip communication. An iterative algorithm for routing pre-scheduled time-division-multiplexed …


Materials Engineering, Switching Mechanism And Novel Applications Of Memristive Devices, Hao Jiang Mar 2018

Materials Engineering, Switching Mechanism And Novel Applications Of Memristive Devices, Hao Jiang

Doctoral Dissertations

Memristive devices have attracted tremendous interests because of their highly desirable properties such as a simple structure, low switching voltage, fast switching speed, excellent scalability, multiple conductance states and great compatibility with the Complementary Metal–Oxide–Semiconductor technology. Hence, they stand out as promising candidates for next-generation non-volatile memory and electronic synapses in artificial neural network. This thesis reports systematic studies of the memristive switching phenomena in oxide based material systems, in aspects of materials engineering, switching mechanism and novel applications. We demonstrated efficient ways of engineering device performances such as metal doping and further presented a highly reliable hafnium oxide based …


Analog Computing Using 1t1r Crossbar Arrays, Yunning Li Mar 2018

Analog Computing Using 1t1r Crossbar Arrays, Yunning Li

Masters Theses

Memristor is a novel passive electronic device and a promising candidate for new generation non-volatile memory and analog computing. Analog computing based on memristors has been explored in this study. Due to the lack of commercial electrical testing instruments for those emerging devices and crossbar arrays, we have designed and built testing circuits to implement analog and parallel computing operations. With the setup developed in this study, we have successfully demonstrated image processing functions utilizing large memristor crossbar arrays. We further designed and experimentally demonstrated the first memristor based field programmable analog array (FPAA), which was successfully configured for audio …


Three-Dimensional Memristor Integrated Circuits And Applications, Peng Lin Nov 2017

Three-Dimensional Memristor Integrated Circuits And Applications, Peng Lin

Doctoral Dissertations

New computing paradigms are highly demanded in the “Big Data” era to efficiently process, store and extract useful information from overwhelmingly rich amount of data. New computing systems based on large scale memristor circuits emerges as a very promising candidate due to its capability to both store and process information, thus eliminating the von Neumann bottleneck in the conventional complementary metal oxide semiconductor (CMOS) based computers. As the lateral scaling of the device geometry approaching its physical limit, three-dimensional stacking of multiple device layers becomes necessary to further increase the packing density. Moreover, innovations in the 3D circuits design can …


Dynamic Range Limitations Of Low-Noise Microwave Transistors At Cryogenic Temperatures, Ahmet Hakan Coskun Jul 2017

Dynamic Range Limitations Of Low-Noise Microwave Transistors At Cryogenic Temperatures, Ahmet Hakan Coskun

Doctoral Dissertations

Dynamic range is an important metric that specifies the limits of input signal amplitude for the ideal operation of a given receiver. The low end of dynamic range is defined by the noise floor whereas the upper limit is determined by large-signal distortion. While dynamic range can be predicted in the temperature range where compact transistor models are valid, the lack of large-signal models at temperatures below -55 C prevents the prediction and optimization of dynamic range for applications that require cryogenic cooling. For decades, the main goal concerning the performance of these applications was lowering the noise floor of …


Kasi: A Ka-Band And S-Band Cross-Track Interferometer, Gerard Ruiz Carregal Mar 2017

Kasi: A Ka-Band And S-Band Cross-Track Interferometer, Gerard Ruiz Carregal

Masters Theses

A dual-frequency system is needed to better understand natural processes that constitute the environment and seasonal cycles of the Earth. A system working at two different wavelengths acquiring data simultaneously will give a valuable dataset since the conditions on the ground will be exactly the same. Hence, elements such as wind, soil moisture or any other changes on the ground will not interfere in the mea- surements. This thesis explains how an S-band radar was built and tested. Moreover, the experiments done with a Ka-band radar used as a scatterometer are explained as well as the data processing and analysis. …


The Impact Of Quantum Size Effects On Thermoelectric Performance In Semiconductor Nanostructures, Adithya Kommini Mar 2017

The Impact Of Quantum Size Effects On Thermoelectric Performance In Semiconductor Nanostructures, Adithya Kommini

Masters Theses

An increasing need for effective thermal sensors, together with dwindling energy resources, have created renewed interests in thermoelectric (TE), or solid-state, energy conversion and refrigeration using semiconductor-based nanostructures. Effective control of electron and phonon transport due to confinement, interface, and quantum effects has made nanostructures a good way to achieve more efficient thermoelectric energy conversion. This thesis studies the two well-known approaches: confinement and energy filtering, and implements improvements to achieve higher thermoelectric performance. The effect of confinement is evaluated using a 2D material with a gate and utilizing the features in the density of states. In addition to that, …


Topography Measurements Using An Airborne Ka-Band Fmcw Interferometric Synthetic Aperture Radar, Kan Fu Mar 2017

Topography Measurements Using An Airborne Ka-Band Fmcw Interferometric Synthetic Aperture Radar, Kan Fu

Doctoral Dissertations

Radar interferometry at millimeter-wave frequencies has the ability of topography measurement of different types of terrain, such as water surfaces and tree canopies. A Ka-band interferometric radar was mounted on an airborne platform, and flown over the Connecticut river region in western Massachusetts near Amherst on June 11, 2012. More than 20 Gigabytes of raw data was recorded. This dissertation outline presents the results of the data processing, which includes (1) the estimation and removal of the embedded high frequency phase error in the raw data; (2) the synthetic aperture processing; (3) the interferometric processing. The digital elevation model (DEM) …


Low Cross-Polarization Vivaldi Arrays, John Logan Nov 2016

Low Cross-Polarization Vivaldi Arrays, John Logan

Doctoral Dissertations

Ultra-wideband (UWB) electronically scanned arrays (ESA) with high efficiency, excellent polarization agility, and wide-scan matching remain essential for servicing multifunctional RF front-ends and other communications, sensing, and jamming or countermeasure systems. To this day, the most popular antenna array element in modern UWB-ESA systems is the Vivaldi, or flared notch, due to its superior wide-scan wide impedance bandwidth, well-known design guidelines, and practical embodiment versatility. Despite their popularity, these arrays tend to radiate unacceptably high cross-polarization levels, thus encouraging a great research opportunity. This dissertation presents the theory and design of a new class of UWB-ESAs, termed Sliced Notch Antenna …


Development Of A Portable Cmos Time-Domain Fluorescence Lifetime Imager, Hongtao Wang Jul 2016

Development Of A Portable Cmos Time-Domain Fluorescence Lifetime Imager, Hongtao Wang

Doctoral Dissertations

Modern laboratory equipments to measure the excited-state lifetime of fluorophores usually include an expensive picosecond pulsed-laser excitation source, a fragile photomultiplier tube, and a large instrument body for optics. A portable and robust device to make fluorescence lifetime measurement in nanosecond scale is of great attraction for chemists and biologists. This dissertation reports the development of a portable LED time-domain fluorimeter from an all-solid-state discrete-component prototype to its advanced CMOS integrated circuit implementation. The motivation of the research is to develop a multiplexed fluorimeter for point-of-care diagnosis. Instruments developed by this novel method have higher fill factor, are more portable, …


Integrated Solar Technologies With Outdoor Pedestrian Bridge Superstructure Decking, Richard K. Racz Mar 2016

Integrated Solar Technologies With Outdoor Pedestrian Bridge Superstructure Decking, Richard K. Racz

Masters Theses

Solar technology has been a major topic in sustainable design for many years. In the last five years, however, the solar technology industry has seen a rapid growth in installations and technological advances in cell design. Combined with a rapidly declining overall system cost, the idea of introducing solar technology into a wider range of applications is becoming a focus for engineers and scientists around the world. So many variables which alter solar energy production, such as the sun and surrounding environment, determine whether a solar design is beneficial. This thesis presents a bridge deck surface integrated with solar cells …