Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 61 - 90 of 1631

Full-Text Articles in Engineering

Spectroscopic Studies On Silicon And Chalcopyrite Materials For Solar Energy Applications, Amandee Hua May 2023

Spectroscopic Studies On Silicon And Chalcopyrite Materials For Solar Energy Applications, Amandee Hua

UNLV Theses, Dissertations, Professional Papers, and Capstones

In this dissertation, silicon-based materials for photovoltaics and chalcopyrite-based materials for photoelectrochemical water splitting are investigated using various spectroscopic and microscopic techniques. Although silicon dominates the photovoltaic market, further improvement can be made by using an alternative low temperature passivation approach. Currently, thermally grown SiO2 passivation is commonly used for silicon solar cells. However, this technique requires high processing temperatures (>800 °C), which increases the thermal budget, potentially decreases the bulk quality of Si, and can lead to difficulties in implementing in production lines. Here, a S-based passivation approach is studied that require lower processing temperatures of ~550 °C. …


High-Yield Bioinspired Atmospheric Water Capture Through Hydrogels, Yiwei Gao May 2023

High-Yield Bioinspired Atmospheric Water Capture Through Hydrogels, Yiwei Gao

UNLV Theses, Dissertations, Professional Papers, and Capstones

Water scarcity is a global issue affecting billions of people, and atmospheric water harvesting (AWH) technology has been identified as a potential solution. However, existing single-material AWH approaches have limited water harvesting yields due to alternated water capture, storage, and release stages, and only function within a high relative humidity range. In my doctoral research project, we developed a bio-inspired, hydrogel-based multi-layer AWH approach that allows for segregated capture, storage, and release stages, and is envisioned to have higher daily water harvesting efficiency even in low-humidity areas. My research began with understanding the relations between hydrogel mechanical stiffness, hydraulic permeability, …


Mesoscale Modeling And Machine Learning Studies Of Grain Boundary Segregation In Metallic Alloys, Malek Alkayyali May 2023

Mesoscale Modeling And Machine Learning Studies Of Grain Boundary Segregation In Metallic Alloys, Malek Alkayyali

All Dissertations

Nearly all structural and functional materials are polycrystalline alloys; they are composed of differently oriented crystalline grains that are joined at internal interfaces termed grain boundaries (GBs). It is well accepted that GB dynamics play a critical role in many phenomena during materials processing or under operating environments. Of particular interest are GB migration and grain growth processes, as they influence many crystal-size dependent properties, such as mechanical strength and electrical conductivity.

In metallic alloys, GBs offer a plethora of preferential atomic sites for alloying elements to occupy. Indeed, recent experimental studies employing in-situ microscopy revealed strong GB solute segregation …


Shape Memory Polymer-Based Multifunctional Syntactic Foams, Siavash Sarrafan Apr 2023

Shape Memory Polymer-Based Multifunctional Syntactic Foams, Siavash Sarrafan

LSU Doctoral Dissertations

With the increase in popularity of shape memory polymers (SMPs), especially in applications such as aerospace, textile, biomedical engineering, and even structures, the weight of the material and the devices made with it has always been a crucial factor. Using the shape memory polymer as a matrix to make a syntactic foam is one of the best and most affordable approaches to creating a lighter material that still has the shape memory effect. The addition of particles of different stiffness, strength, and size, with variable fractions, creates a composite that enables engineering the mechanical, as well as other physical and …


Microstructure-Informed Modeling Of Hydrogen Diffusion In Zirconium Polycrystals, Alireza Tondro Apr 2023

Microstructure-Informed Modeling Of Hydrogen Diffusion In Zirconium Polycrystals, Alireza Tondro

Electronic Thesis and Dissertation Repository

Zirconium alloys are widely used in the core of various types of nuclear reactors. During service, the hot water coolant reacts with zirconium and releases hydrogen atoms that ingress into the lattice of the metal alloy. With time, hydrogen concentration exceeds its terminal solid solubility limit in zirconium, and a brittle phase known as zirconium hydride forms. This phase severely deteriorates the mechanical properties of zirconium alloys, leading to safety concerns regarding the integrity of nuclear pressure tubes. This thesis uses a crystal plasticity finite element model coupled with diffusion equations to study the effects of localized deformation at the …


Development Of Novel Electrodes And Electrolytes For Safer Aqueous Ammonium Ion Batteries With Enhanced Performance., Shelton Farai Kuchena Apr 2023

Development Of Novel Electrodes And Electrolytes For Safer Aqueous Ammonium Ion Batteries With Enhanced Performance., Shelton Farai Kuchena

LSU Doctoral Dissertations

The Lithium-ion battery (LIBs) system has dominated the battery market because of its superior energy and power density. Problems related to LIBs such as safety, scarcity of cobalt and lithium have led researchers to explore alternative battery systems. NH4+ ion is a nonmetal charge carrier with lower molar mass (18 mol g-1) and smaller hydrated ionic size (3.31 Å) which results in excellent electrochemical properties. Furthermore, NH4+ ion has a tetrahedral structure that has no preferred orientation as compared to spherical metal ions giving a different intercalation chemistry based on hydrogen bonding. These properties …


Physics-Based Crystal Plasticity Model For Predicting Microstructure Evolution And Dislocation Densities, Juyoung Jeong Mar 2023

Physics-Based Crystal Plasticity Model For Predicting Microstructure Evolution And Dislocation Densities, Juyoung Jeong

LSU Doctoral Dissertations

This work presents three different studies investigating plastic deformation mechanisms in metals and alloys using crystal plasticity finite element (CPFE) modeling. The first study presents a new nonlocal crystal plasticity model for face-centered cubic single crystals under heterogeneous inelastic deformation. The model incorporates generalized constitutive relations that incorporate the thermally activated and drag mechanisms to cover different kinetics of viscoplastic flow in metals and describes the plastic flow and yielding of single-crystals using dislocation densities. The model is compared to micropillar compression experiments for copper single crystals and clarifies the complex microstructural evolution of dislocation densities in metals. The second …


Precious Plastics - Plastic Brick Machine Fabrication, Timothy Ukaobasi Kanu, Evi Paraskevi Troulis Mar 2023

Precious Plastics - Plastic Brick Machine Fabrication, Timothy Ukaobasi Kanu, Evi Paraskevi Troulis

Architectural Engineering

The goal of this research is to determine the structural parameters of the recycled plastic polypropylene when molded into bricks resembling CMU blocks. To accomplish this, three mechanisms had to be assembled: the shredder, the injector, and the 1x1 mold. A tensile and compression test were to be performed on the plastic brick, and the values would be used to compare the tensile and compressive strength of PP plastic bricks, as well as their modulus of elasticity and stress vs. Strain performance. These values would be analyzed to determine whether it would be feasible to build an entire plastic wall. …


Mechanical Properties And Performance Of A Novel Nano-Engineered Unitized Composite With Quasi-Isotropic Layup, Brian Matthew Pudlo Mar 2023

Mechanical Properties And Performance Of A Novel Nano-Engineered Unitized Composite With Quasi-Isotropic Layup, Brian Matthew Pudlo

Theses and Dissertations

Carbon nanotubes (CNTs) exhibit outstanding mechanical, electrical, and thermal properties, but are a challenge to effectively implement into macroscopic composites for aerospace applications. This research investigates the mechanical properties and performance of a newly developed hybrid NanoStitch composite, alongside a control polymer matrix composite, at room temperature. Both composite material systems investigated in this work have quasi-isotropic layup. Monotonic tension-tofailure, tension-tension fatigue, and creep tests were performed to characterize the performance of the composites under cyclic and sustained loading. Experimental results obtained for the quasi-isotropic NanoStitch composite were compared to those obtained for the quasi-isotropic control composite. The properties and …


Influence Of Processed Natural Black Sand Vs. Natural White Sand And Silica Flour As Additives To Oil-Well Cementing Applications, Ramy Abuel Maaty Feb 2023

Influence Of Processed Natural Black Sand Vs. Natural White Sand And Silica Flour As Additives To Oil-Well Cementing Applications, Ramy Abuel Maaty

Theses and Dissertations

Cementing is a crucial and fundamental step in the process of drilling wells to extract oil from its reservoirs. Cementing main functions are to achieve zonal isolation and provide mechanical support to the casing. Impermeable and powerful cement is strongly desired to withstand high pressures and temperatures during the lifetime of the producing wells. Various additives to cement, such as silica flour, fly ash, Nano-additives and other advanced materials have been used and tested to attain improved cement of higher quality and enhanced properties such as permeability, porosity, mechanical and rheological properties. Very few researches have discussed the uses of …


Mechanical Design Of A Microwave Imaging Device For Breast Cancer Detection In Mri Scanners, Grace M. Player Jan 2023

Mechanical Design Of A Microwave Imaging Device For Breast Cancer Detection In Mri Scanners, Grace M. Player

Dartmouth College Master’s Theses

This project seeks to develop an updated version of a microwave imaging device for use in conjunction with breast MRI, improving upon existing technology and developing novel concepts for the device. It posits three primary redesign targets for updating the previous system: resizing the system height, making the device more iteration- friendly, and improving the overall manufacturability of the device by replacing custom components with commercially available alternatives. All three of these redesign targets are met in the new design, V2.0. The height is reduced by reducing antenna travel and height, embedding some components, and shortening the tank wall, resulting …


Application Of Multi-Scale Computational Techniques To Complex Materials Systems, Mujan N. Seif Jan 2023

Application Of Multi-Scale Computational Techniques To Complex Materials Systems, Mujan N. Seif

Theses and Dissertations--Chemical and Materials Engineering

The applications of computational materials science are ever-increasing, connecting fields far beyond traditional subfields in materials science. This dissertation demonstrates the broad scope of multi-scale computational techniques by investigating multiple unrelated complex material systems, namely scandate thermionic cathodes and the metallic foam component of micrometeoroid and orbital debris (MMOD) shielding. Sc-containing "scandate" cathodes have been widely reported to exhibit superior properties compared to previous thermionic cathodes; however, knowledge of their precise operating mechanism remains elusive. Here, quantum mechanical calculations were utilized to map the phase space of stable, highly-faceted and chemically-complex W nanoparticles, accounting for both finite temperature and chemical …


Encapsulation And Culture Of Plant Protoplasts In Hydrogel Microspheres Using Droplet Microfluidics, Matthew Grasso Jan 2023

Encapsulation And Culture Of Plant Protoplasts In Hydrogel Microspheres Using Droplet Microfluidics, Matthew Grasso

Graduate College Dissertations and Theses

Plant morphogenesis requires the coordinated growth between cells and their neighbors. This coordination is regulated by internal and external signals that are both physical and chemical. It is understood that both mechanical and molecular signals are involved in the regulation of plant morphogenesis however, how mechanical signals induce molecular signals and vice versa is not. This is due to a lack of research tools for manipulating and measuring the mechanical environment of growing plant cells. Such tools would ideally provide individual plant cells with mechanically tunable physical microenvironments. This may allow changes in the cells physical environment to be linked …


Rc Baja Suspension And Steering, Garrett Bailey Jan 2023

Rc Baja Suspension And Steering, Garrett Bailey

All Undergraduate Projects

The RC Baja team set out to engineer and construct a working remote-control device that can compete in the ASME Baja Competition. The students have a focus on either suspension and steering or drivetrain and chassis. This report is centered on the suspension and steering. First, multiple analyses were completed using engineering methods such as mechanical design, statics, strengths of materials, and dynamics for parts of the device. The calculations found in the analysis are then used to create designs for the parts so that they will meet the requirements and be successful in the competition. After the parts are …


Dome Tester, Clark Bates, Nikolas M. Kulin Jan 2023

Dome Tester, Clark Bates, Nikolas M. Kulin

Williams Honors College, Honors Research Projects

We are reconfiguring and modifying the previously built dome tester to be more user friendly and mechanically applicable. This has a long-term goal of being a usable teaching tool for manufacturing education within the college of engineering and polymer sciences. The dome tester pushes a metal dome into a clamped sheet of metal to test its forming limits and where necking occurs. We have implemented a better method of viewing the sheet sample as it is being deformed, and improved measuring methods for the distance a sample is deformed. By introducing these changes in conjunction with improved documentation of the …


Development Of Inconel 718f And Inconel 718e Powders For Parts Manufacturing Utilizing Binder Jet Three-Dimensional Printing And Compressed Pellet Methods, Duncan Eric Manor Ii Jan 2023

Development Of Inconel 718f And Inconel 718e Powders For Parts Manufacturing Utilizing Binder Jet Three-Dimensional Printing And Compressed Pellet Methods, Duncan Eric Manor Ii

Graduate Theses, Dissertations, and Problem Reports

Alloy Inconel 718 is a Ni based superalloy used for high temperature applications including turbine blades, turbocharger rotors and nuclear reactors. Inconel 718 is a popular commercial atomized powder that has limitations in performance for use in additive manufacturing applications due to poor part quality and efficiency of current fabrication methods. Developing new compositions and additive manufacturing (AM) methodologies of IN718 is critical to improve the quality and the efficiency of IN718 parts manufacturing. Developing new additive manufacturing methodology that produces higher quality parts made of IN718 as compared to current methods has the potential to greatly impact industry, academia, …


Assessing A Byproduct Of The Cbd Ethanol Extraction Process For Potential As A Wood Finishing Product, Avani M. Flanagan Jan 2023

Assessing A Byproduct Of The Cbd Ethanol Extraction Process For Potential As A Wood Finishing Product, Avani M. Flanagan

Masters Theses

Developments in regulations concerning the use of CBD products as therapeutic remedies have allowed the global cannabidiol (CBD) market to take off within the past five years. Despite producers of CBD oil wanting to optimize their methods and increase product yields, several waste streams still exist. During the winterization phase of the ethanol extraction process, CBD oil is cooled and filtered so the fats, waxes, and lipids from the Cannabis sativa plant can coagulate and be removed, creating a purer oil with higher potency but contributing to the 58% (crude weight) total loss that occurs throughout the process. The removed …


Characterization Of Aerosol Jet Printed Silver Thin Films Sintered By A Scanning Laser, William A. Metzger Jan 2023

Characterization Of Aerosol Jet Printed Silver Thin Films Sintered By A Scanning Laser, William A. Metzger

Browse all Theses and Dissertations

Direct write printing, which is part of additive manufacturing (AM) technology, offers unique capabilities that can complement traditional methods of electronics fabrication. Printing of electrical interconnects via aerosolization is one of the areas in AM that is very important in electronics fabrication. Post-print sintering is a critical step in printed electrical interconnects because it strongly influences the electrical resistivity of the interconnects. Interconnects require the lowest possible resistivity to achieve better performance. Thermal sintering is the most common technique employed in printed interconnects. However, it is limited to substrates that can handle the high temperature requirement for sintering. For polymers …


Processing And Characterization Of Inkjet Printed Batio3/Su-8 Nanocomposite Dielectrics, Mustapha A. Muhammad Jan 2023

Processing And Characterization Of Inkjet Printed Batio3/Su-8 Nanocomposite Dielectrics, Mustapha A. Muhammad

Browse all Theses and Dissertations

The persistent demand for flexible and wearable electronic components in healthcare, aerospace, media, and transit applications has led to a significant shift from traditional electronics processes to printed electronics. Printed electronics are anticipated to establish itself as the industry's dominant force due to their enhanced flexibility, rapid prototyping capabilities, and seamless integration with everyday objects. They are cost-effective and have the scalable option for large-scale production because additive manufacturing techniques are used. Among the various printing methods available, inkjet printing has recently gained popularity for printing electronics, especially capacitors that require precise and complex structures on different substrates. Inkjet printing …


Rheological Modeling And Inkjet Printability Of Electrode Ink Formulation For Miniature And Interdigital Lithium-Ion Batteries, Habib Temitope-Adebayo Ajose Jan 2023

Rheological Modeling And Inkjet Printability Of Electrode Ink Formulation For Miniature And Interdigital Lithium-Ion Batteries, Habib Temitope-Adebayo Ajose

Browse all Theses and Dissertations

The rapid advancement of technology has resulted in a greater need for effective energy storage systems to meet the demands of the transportation and electronics industries. Among various energy storage systems, batteries are the most widely used, primarily because of their ability to store significant amounts of energy. In addition, lithium-ion batteries are prevalent for powering portable electronic devices due to their long cycle life, high energy density, and high operating voltage. The traditional doctor-blade approach has been used over the years for producing batteries. Currently, research is being directed to additively manufacture Li-ion batteries via Drop-on-Demand Inkjet Printing with …


Direct Ink Write Processing Of Signal Crossovers Using Aerosol Jet Printing Method, Lucas A. Clark Jan 2023

Direct Ink Write Processing Of Signal Crossovers Using Aerosol Jet Printing Method, Lucas A. Clark

Browse all Theses and Dissertations

Electronics in different applications, such as in medical imaging devices, radar systems, communication transmitters, and optical drives, often require various power and signal lines to be integrated at board level. In such cases, different lines may cross over one another in three-dimensional space for efficient electronic integration. Crossovers are usually achieved by adding additional layers to a PCB. However, these additional layers increase the cost, weight, and complexity of the component. By creating a process and structure to offer board-level heterogenous integration, these factors may be reduced. RF-DC crossovers were designed and additively manufactured using an aerosol jet printer. Benzocyclobutene …


Comparative Study Of Mof's In Phosphate Adsorption, Eniya Karunamurthy Jan 2023

Comparative Study Of Mof's In Phosphate Adsorption, Eniya Karunamurthy

Browse all Theses and Dissertations

High concentrations of phosphate are known to adversely affect the environment. Excess phosphate can lead to eutrophication that eventually fosters uncontrollable growth of aquatic plants and algae. This can result in depletion of oxygen content which adversely impacts underwater organism’s survival rates. Metal organic frameworks (MOFs) consist of organic linkers in conjunction with metal ions or clusters arranged within a crystalline structure. They are highly porous and have larger surface area due to their ability to possess extensive void spaces while remaining bulky in nature. MOFs can absorb phosphate from aqueous solutions. We have investigated the use of commercially available …


Space Force Design Project, Emily Greene, Ashton Orosa, Julia Patek, Nathan Doty Jan 2023

Space Force Design Project, Emily Greene, Ashton Orosa, Julia Patek, Nathan Doty

Williams Honors College, Honors Research Projects

The objective of our research project is to develop a lab testbed composed of a curved surface to represent a spacecraft hull, a mobile robot equipped with repair tools, and a robotic arm equipped with a laser 3D scanner. This project is part of a larger grant to the University of Akron from Space Force and Air Research Labs. The lab testbed developed in this project will be used to assist in creating and testing a software and algorithm to inspect and repair spacecraft while in orbit. The project will involve researching spacecraft hulls to create an accurate simulation bed, …


Establishing The Foundation To Robotize Complex Welding Processes Through Learning From Human Welders Based On Deep Learning Techniques, Rui Yu Jan 2023

Establishing The Foundation To Robotize Complex Welding Processes Through Learning From Human Welders Based On Deep Learning Techniques, Rui Yu

Theses and Dissertations--Electrical and Computer Engineering

As the demand for customized, efficient, and high-quality production increases, traditional manufacturing processes are transforming into smart manufacturing with the aid of advancements in information technology, such as cyber-physical systems (CPS), the Internet of Things (IoT), big data, and artificial intelligence (AI). The key requirement for integration with these advanced information technologies is to digitize manufacturing processes to enable analysis, control, and interaction with other digitized components. The integration of deep learning algorithm and massive industrial data will be critical components in realizing this process, leading to enhanced manufacturing in the Future of Work at the Human-Technology Frontier (FW-HTF).

This …


Modeling Of Quad-Station Module Cluster Tools Using Petri Nets, Aung Nay Dec 2022

Modeling Of Quad-Station Module Cluster Tools Using Petri Nets, Aung Nay

Theses

The semiconductor industry is highly competitive, and with the recent chip shortage, the throughput of wafers has become more important than ever. One of the tools that the industry has deployed is to use of quad-station modules instead of the traditional single-station modules that allow for higher throughput and better wafer consistency by processing multiple wafers at the same time and distributing work. The industry trend is to use multiple transfer chamber robots to stack the quad-station modules in a series, particularly for etch products. In this work, the quad-station cluster tool wafer movement is modeled by using Petri net …


Energy Dissipation In A Sand Damper Under Cyclic Loading, Ehab Sabi Dec 2022

Energy Dissipation In A Sand Damper Under Cyclic Loading, Ehab Sabi

Civil and Environmental Engineering Theses and Dissertations

Various seismic and wind engineering designs and retrofit strategies have been in development to meet structures' proper and safe operation during earthquake and wind excitation. One such method is the addition of fluid and particle dampers, such as sand dampers, in an effort to reduce excessive and dangerous displacements of structures. The present study implements the discrete element method (DEM) to assess the performance of a pressurized sand damper (PSD) and characterize the dissipated energy under cyclic loading. The idea of a PSD is to exploit the increase in shearing resistance of sand under external pressure and the associated ability …


Sulfonated Styrene Grafted Sebs/Abs Made By Additive Manufacturing For Ion Exchange Applications, Avianna Elaine Gallegos Dec 2022

Sulfonated Styrene Grafted Sebs/Abs Made By Additive Manufacturing For Ion Exchange Applications, Avianna Elaine Gallegos

Open Access Theses & Dissertations

An interpenetrating polymer network (IPN) for cation exchange applications was synthesized from a blend of styrene-ethylene/butylene-styrene (SEBS) and acrylonitrile butadiene styrene (ABS), which was 3D printed, grafted with crosslinked polystyrene (PS), and sulfonated. A method for styrene grafting was applied to reduce the damage to polymer phases caused by the sulfonation reaction. Styrene and divinylbenzene monomers were introduced to the IPN and induced with heat treatment to polymerize in situ. The graft copolymerization reaction was enhanced with varying quantities of benzoyl peroxide as a chemical initiator. The samples were subsequently sulfonated with chlorosulfonic acid in dichloroethane and functionalized for ion …


Fabrication, Thermophysical, And Mechanical Properties Of Cermet And Cercer Fuel Composites For Nuclear Thermal Propulsion, Neal D. Gaffin Dec 2022

Fabrication, Thermophysical, And Mechanical Properties Of Cermet And Cercer Fuel Composites For Nuclear Thermal Propulsion, Neal D. Gaffin

Doctoral Dissertations

Nuclear thermal propulsion (NTP) utilizes nuclear fission to double the efficiency of
in-space propulsion systems compared with traditional combustion rocket systems.
NTP systems are limited primarily by the fuel material choice, due to the extreme
conditions they will need to endure, including temperatures up to 3000 K, multiple
thermal cycles with rapid heating and cooling, exposure to hot flowing hydrogen,
large thermal gradients, and high neutron flux. Particle based fuels, namely ceramic-
metallic (cermet) and ceramic-ceramic (cercer) composites are both promising fuel
element material candidates for NTP. Given the high temperature nature, these
materials are difficult to fabricate and very …


Nano-Engineered Soft Magnets: Potential Application In Water Treatment, Hyperthermia And Molecular (Organic) Magnets, Yohannes Weldemariam Getahun Dec 2022

Nano-Engineered Soft Magnets: Potential Application In Water Treatment, Hyperthermia And Molecular (Organic) Magnets, Yohannes Weldemariam Getahun

Open Access Theses & Dissertations

Scrutinizing the remarkable and tunable properties of magnetic materials at a nanoscale size "There's Plenty of Room at the Bottom..." Richard Feynman, this study attempts to find sustainable solutions to some of the deteriorating environmental, health, and energy problems the world is encountering. Due to their simple preparation, surface adaptability, and tunable magnetic and optical properties, magnetic nanoparticles have been extensively investigated in water treatment, cancer therapy, data storage, and more. However, relying on non-reusable and chemical-based treatment agents in water, complex and costly cancer treatment procedures and molecular magnets that operate far below room temperature limited those attempts from …


The Qualification Of Sealability And Creep Relaxation Of Additively Manufactured Zytel Gaskets For Pem Fuel Cells, Robert Lazarin Dec 2022

The Qualification Of Sealability And Creep Relaxation Of Additively Manufactured Zytel Gaskets For Pem Fuel Cells, Robert Lazarin

Open Access Theses & Dissertations

The purpose of this thesis is to study the feasibility of low-cost additive manufacturing of gaskets for proton exchange membrane fuel cells exposed to extreme temperature conditions ranging from -55°C to 100°C. With the growing popularity and decreasing costs of additive manufacturing technologies, specifically Material Extrusion (ME), research is being conducted to determine the feasibility of ME components. Thermally cycled PEMFCs may exhibit accelerated gasket deterioration, therefore, the mechanical stability of material extruded gaskets following a harsh thermal cycle must be assessed. The feasibility of the material extruded gaskets will be proven by manufacturing optimization and mechanical testing. The target …