Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials

Theses/Dissertations

2017

Institution
Keyword
Publication

Articles 1 - 30 of 104

Full-Text Articles in Engineering

Characterization And Modeling Of Asphalt Concrete For Dynamic Properties And Performances, A S M A. Rahman Dec 2017

Characterization And Modeling Of Asphalt Concrete For Dynamic Properties And Performances, A S M A. Rahman

Civil Engineering ETDs

The recently developed mechanistic-empirical pavement design guide (MEPDG, also known as Pavement M-E design method) uses the nationally calibrated, binder viscosity-based dynamic modulus predictive model for the design and analysis of asphalt pavements. In this study, this model is assessed for its appropriateness for asphalt-aggregate mixtures typically used in New Mexico. In essence, this study investigates the predictability issue of complex modulus of New Mexico mixes. A total of 54 Superpave mixes with different aggregate gradations, air voids, and binder grades were collected from the mixing plants and from the pavement construction sites. The loose asphalt mixtures were then compacted, …


Characterization Of Structural Dynamics Of The Human Head Using Magnetic Resonance Elastography, Andrew Arun Badachhape Dec 2017

Characterization Of Structural Dynamics Of The Human Head Using Magnetic Resonance Elastography, Andrew Arun Badachhape

McKelvey School of Engineering Theses & Dissertations

In traumatic brain injury (TBI), the skull-brain interface, composed of three meningeal layers: the dura mater, arachnoid mater, and pia mater, along with cerebrospinal fluid (CSF) between the layers, plays a vital role in transmitting motion from the skull to brain tissue. Magnetic resonance elastography (MRE) is a noninvasive imaging modality capable of providing in vivo estimates of tissue motion and material properties. The objective of this work is to augment human and phantom MRE studies to better characterize the mechanical contributions of the skull-brain interface to improve the parameterization and validation of computational models of TBI. Three specific aims …


Functional Bio-Nano Hybrids Through A Precise Control Of Interfacial Interactions At The Nanoscale, Sirimuvva Tadepalli Dec 2017

Functional Bio-Nano Hybrids Through A Precise Control Of Interfacial Interactions At The Nanoscale, Sirimuvva Tadepalli

McKelvey School of Engineering Theses & Dissertations

During the course of evolution, proteins have evolved to perform exquisite functions including structural support, signal transduction, actuation, sensing, catalysis, trafficking, gating, light-harvesting, charge transfer, molecular recognition, self-assembly, self-organization, or combinations of two or more of these functions. A precise control and manipulation of the structure and function of proteins is conceivable with the advent of nanotechnology, which has facilitated the integration of nanomaterials with functional biomolecules to realize bio-nano hybrids with synergistically enhanced functionalities.

At the genesis of bionanotechnology, a paucity in the fundamental understanding of the bio-nano interfaces is a grave impediment to the progress of the field. …


The Inter-Laminar Shearing Effect On Wrinkle Development In Composite Forming Processes, David Sundquist Dec 2017

The Inter-Laminar Shearing Effect On Wrinkle Development In Composite Forming Processes, David Sundquist

McKelvey School of Engineering Theses & Dissertations

Composite materials are becoming prevalent in aerospace industries as the uniqueness of the composite structure allows the composite to be tailored specifically for individual applications. Many fabrication techniques produce defects in composite parts such as wrinkles, fiber waviness, fiber misalignment, and porosity. The driving mechanisms behind these defects occurring during forming processes are not fully understood and, thus, characterization formation of these defects in a uncured state is beneficial to optimize composite processing. This work primarily investigated the influence of how uncured pre-impregnated carbon ply properties affect the wrinkling behavior of a composite laminates. Several factors affecting composite ply forming …


Wireless Power Transfer Roadway Integration, Trevor Gardner Dec 2017

Wireless Power Transfer Roadway Integration, Trevor Gardner

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Electric vehicles represent a major accomplishment in the energy and transportation industry. Unfortunately, they are restricted to a small travel range because of limited battery life. Successful integration of wireless power transfer (WPT) systems into the infrastructure would remove the range restrictions of EVs. To successfully integrate this technology, several requirements must be met. First, the embedment process cannot interfere with the electrical performance of the inductive power transfer (IPT) system. Second, the presence of the IPT system in the pavement structure cannot negatively affect the roadway’s lifespan.

Several systems were directly embedded in roadway materials. The electrical properties of …


Modeling Of Dislocation Channel Formation And Evolution In Irradiated Metals, Peter James Doyle Dec 2017

Modeling Of Dislocation Channel Formation And Evolution In Irradiated Metals, Peter James Doyle

Masters Theses

Defect-free dislocation channel formation has been reported to promote plastic instability during tensile testing via localized plastic flow, leading to a distinct loss of ductility and strain hardening in many low-temperature irradiated materials. In order to study the underlying mechanisms governing dislocation channel width and formation, the channel formation process is modeled via a simple stochastic dislocation-jog process dependent upon grain size, defect cluster density, and defect size. Dislocations traverse a field of defect clusters and jog stochastically upon defect interaction, forming channels of low defect-density. Based upon prior molecular dynamics (MD) simulations and in-situ experimental transmission electron microscopy (TEM) …


A Comparison Study Of Composite Laminated Plates With Holes Under Tension, Joun S. Kim Dec 2017

A Comparison Study Of Composite Laminated Plates With Holes Under Tension, Joun S. Kim

Master's Theses

A Comparison Study of Composite Laminated Plates with Holes under Tension

A study was conducted to quantify the accuracy of numerical approximations to deem sufficiency in validating structural composite design, thus minimizing, or even eliminating the need for experimental test. Error values for stress and strain were compared between Finite Element Analysis (FEA) and analytical (Classical Laminated Plate Theory), and FEA and experimental tensile test for two composite plate designs under tension: a cross-ply composite plate design of [(0/90)4]s, and a quasi-isotropic layup design of [02/+45/-45/902]s, each with a single, centered hole of 1/8” diameter, and 1/4" diameter (four sets …


The Role Of Soil Stiffness In Reverse Fault Rupture Propagation, Moises I. Buelna Dec 2017

The Role Of Soil Stiffness In Reverse Fault Rupture Propagation, Moises I. Buelna

Master's Theses

A nonlinear Mohr-Coulomb constitutive model with a strain dependent yield surface and non-associated flow was employed to study the plastic soil properties which affect the rate of surface fault rupture propagation in reverse events. These numerical simulations show a trend for soils with higher stiffness to have a higher rate of rupture propagation. Additionally the study shows the effects of strain softening and hardening on the rate of rupture propagation. Soils which strain harden exhibiting ductile behavior typically require more basal offset to rupture to the surface than soils which strain soften exhibiting brittle behavior. These results agree with our …


Controlled Electrochemical Reduction Of Gold And Palladium Metal Precursors In Polyaniline, Nicole Goodwin Dec 2017

Controlled Electrochemical Reduction Of Gold And Palladium Metal Precursors In Polyaniline, Nicole Goodwin

UNLV Theses, Dissertations, Professional Papers, and Capstones

Polyaniline (PANI) has been extensively studied due to its unique electrochemical properties. The conjugated polymer is conductive with high chemical stability below 100°C, mechanical strength, and large surface area. The applications of PANI have included chemical sensing, corrosion inhibition coatings, light emitting diode and as a substrate for metal composite catalysts. Both chemical and electrochemical methods have been developed and utilized in the synthesis of PANI/metal composites. The simultaneous reduction of aniline and metal precursor produces a composite of PANI encapsulated metal, reducing the active surface area available for catalysis. Alternatively, chemical reduction of the metal precursor into preformed PANI …


Surface And Interface Characterization Of Solution-Processed Metal Oxides And Pedot:Pss Using Photoelectron Spectroscopy, Lynette M. Kogler Dec 2017

Surface And Interface Characterization Of Solution-Processed Metal Oxides And Pedot:Pss Using Photoelectron Spectroscopy, Lynette M. Kogler

UNLV Theses, Dissertations, Professional Papers, and Capstones

Solution-processed materials are appealing for use in printable electronics as a means to lower production costs, but precise control of the process is crucial for achieving the desired properties in the final materials and their interfaces. Electronic interface properties depend on both the involved materials and their fabrication processes, impacting the development and commercialization of these materials. Analyzing the chemical and electronic structure of these materials, particularly at the surfaces and interfaces, is important not only for insuring that the materials have the desired properties, but also for understanding the effects of the fabrication process and how to modify properties …


Computational Studies Of Structure–Function Relationships Of Supported And Unsupported Metal Nanoclusters, Hongbo Shi Nov 2017

Computational Studies Of Structure–Function Relationships Of Supported And Unsupported Metal Nanoclusters, Hongbo Shi

Doctoral Dissertations

Fuel cells have been demonstrated to be promising power generation devices to address the current global energy and environmental challenges. One of the many barriers to commercialization is the cost of precious catalysts needed to achieve sufficient power output. Platinum-based materials play an important role as electrocatalysts in energy conversion technologies. In order to improve catalytic efficiency and facilitate rational design and development of new catalysts, structure–function relationships that underpin catalytic activity must be understood at a fundamental level. First, we present a systematic analysis of CO adsorption on Pt nanoclusters in the 0.2-1.5 nm size range with the aim …


Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel Nov 2017

Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel

Doctoral Dissertations

A uniform dispersion of reactants is necessary to achieve a complete reaction involving multi-components, especially for the crosslinking of rigid high-performance materials. In these reactions, miscibility is crucial for curing efficiency. This miscibility is typically enhanced by adding a third component, a plasticizer. For the reaction of the highly crystalline crosslinking agent hexamethylenetetramine (HMTA) with a strongly hydrogen-bonded phenol formaldehyde resin, furfural has been traditionally used as the plasticizer. However, the reason for its effectiveness is not clear. In this doctoral thesis work, miscibility and crosslinking efficiency of plasticizers in phenolic curing reactions are studied by thermal analysis and spectroscopic …


Numerical Simulation Of Multi-Phase Core-Shell Molten Metal Drop Oscillations, Kaushal Sumaria Oct 2017

Numerical Simulation Of Multi-Phase Core-Shell Molten Metal Drop Oscillations, Kaushal Sumaria

Masters Theses

The surface tension of liquid metals is an important and scientifically interesting parameter which affects many metallurgical processes such as casting, welding and melt spinning. Conventional methods for measuring surface tension are difficult to use for molten metals above temperatures of 1000 K. Containerless methods are can be used to measure the surface tension of molten metals above 1000 K. Oscillating drop method is one such method where a levitated droplet is allowed to undergo damped oscillations. Using the Rayleigh’s theory for the oscillation of force-free inviscid spherical droplets, surface tension and viscosity of the sample can be calculated from …


3d Printing Of 316l Stainless Steel And Its Effect On Microstructure And Mechanical Properties, Rawn Penn Oct 2017

3d Printing Of 316l Stainless Steel And Its Effect On Microstructure And Mechanical Properties, Rawn Penn

Graduate Theses & Non-Theses

Laser powder bed fusion or 3D printing is a potential candidate for net shape forming and manufacturing complex shapes. Understanding of how various parameters affect build quality is necessary. Specimens were made from 316L stainless steel at 0°, 30°, 60°, and 90° angles measured from the build plate. Three tensile and four fatigue specimens at each angle were produced. Fracture morphology investigation was performed to determine the fracture mode of specimens at each build angle. Microstructural analysis was performed on one of each orientation. The average grain size of the samples was marginally influenced by the build angle orientation. Tensile …


Rice Hull Bioreactor For Recirculating Aquaculture, Marlon A. Greensword Aug 2017

Rice Hull Bioreactor For Recirculating Aquaculture, Marlon A. Greensword

LSU Doctoral Dissertations

The engineering of floating media biofilters has been optimized over the years. The backwashing process has made them more energy and water efficient. Likewise, moving bed bioreactors (MBBR) are gaining interest and popularity because they are relatively affordable to build. Yet, developing countries’ aquaculture production remains largely excluded from the advances made in recirculating aquaculture systems (RAS). This discrepancy is partially driven by the high costs of media such plastic beads and Kaldnes (KMT) media, commonly used in MBBR.

This dissertation evaluates the usability and profitability of rice hulls (RH), an abundant by-product in many developing nations, as a sinking …


Photodynamic Therapy: Agents And Mechanisms, Rebecca Claire Gilson Aug 2017

Photodynamic Therapy: Agents And Mechanisms, Rebecca Claire Gilson

McKelvey School of Engineering Theses & Dissertations

Despite enormous efforts, cancer remains a leading cause of morbidity and mortality world-wide. The main challenges currently facing cancer therapy include lack of adequate tumor targeting, failure to treat hypoxic tumor cells, and induction therapy resistant tumors. A solution to these limitations can be found in photodynamic therapy (PDT) which combines light and light activatable compounds, photosensitizers (PSs), to produce cytotoxic reactive oxygen species (ROS) to damage tumor tissue. This creates a spatiotemporal therapeutic effect, where cell damage only occurs at the intersection of the PS and light. PDT can treat tumors through unique mechanisms which reduce induction of tumor …


Hollow And Porous Plasmonic Nanostructures For Highly Efficient Chemical And Biological Sensing, Keng-Ku Liu Aug 2017

Hollow And Porous Plasmonic Nanostructures For Highly Efficient Chemical And Biological Sensing, Keng-Ku Liu

McKelvey School of Engineering Theses & Dissertations

Localized surface plasmon resonance (LSPR) involves the collective and coherent oscillation of dielectrically confined conduction electrons. The LSPR wavelength of noble metal nanoparticles (such as gold, silver and copper), which falls into the visible and near infrared range of the electromagnetic spectrum, is sensitive to the composition, size, shape, dielectric properties of the surrounding medium, and proximity to other nanostructures (plasmon coupling). Based on the sensitivity of the surface plasmon resonance to the changes in the dielectric properties of the surrounding medium and the enhancement of the electromagnetic (EM) field in proximity of metal nanostructures, two important classes of plasmonic …


Bubble-Induced Inverse Gas-Liquid-Solid Fluidized Bed, Xiliang Sun Aug 2017

Bubble-Induced Inverse Gas-Liquid-Solid Fluidized Bed, Xiliang Sun

Electronic Thesis and Dissertation Repository

Gas-liquid-solid fluidized beds have been widely applied in wastewater treatment, however, the current method of wastewater process has several limitations. Hence, an improved method is in demand. A 3.5 height and 0.1534m inner diameter column was used to study the hydrodynamic characteristics of a bubble-induced three-phase inverse fluidized bed. Air, water and three types of low-density particles were employed as gas, liquid and solid phases.

The hydrodynamic properties in the bubble-induced three-phase fluidized bed were investigated to provide the basic information for the industrial process, such as flow regime, bed expansion ratio and phase holdups. A flow regime map containing …


Correlating Long-Term Lithium Ion Battery Performance With Solid Electrolyte Interphase (Sei) Layer Properties, Seong Jin An Aug 2017

Correlating Long-Term Lithium Ion Battery Performance With Solid Electrolyte Interphase (Sei) Layer Properties, Seong Jin An

Doctoral Dissertations

This study was conducted to understand effects of some of key factors (i.e., anode surface properties, formation cycling conditions, and electrolyte conditions) on solid electrolyte interphase (SEI) formation in lithium ion batteries (LIBs) and the battery cycle life. The SEI layer passivates electrode surfaces and prevents electron transfer and electrolyte diffusion through it while allowing lithium ion diffusion, which is essential for stable reversible capacities. It also influences initial capacity loss, self-discharge, cycle life, rate capability and safety. Thus, SEI layer formation and electrochemical stability are primary topics in LIB development. This research involves experiments and discussions on key factors …


Experimental Study On Viscoelastic Fluid-Structure Interactions, Anita Anup Dey Jul 2017

Experimental Study On Viscoelastic Fluid-Structure Interactions, Anita Anup Dey

Masters Theses

It is well known that when a flexible or flexibly-mounted structure is placed perpendicular to the flow of a Newtonian fluid, it can oscillate due to the shedding of separated vortices at high Reynolds numbers. If the same flexible object is placed in non-Newtonian flows, however, the structure's response is still unknown. The main objective of this thesis is to introduce a new field of viscoelastic fluid-structure interactions by showing that the elastic instabilities that occur in the flow of viscoelastic fluids can drive the motion of a flexible structure placed in its path. Unlike Newtonian fluids, the flow of …


Dynamic Range Limitations Of Low-Noise Microwave Transistors At Cryogenic Temperatures, Ahmet Hakan Coskun Jul 2017

Dynamic Range Limitations Of Low-Noise Microwave Transistors At Cryogenic Temperatures, Ahmet Hakan Coskun

Doctoral Dissertations

Dynamic range is an important metric that specifies the limits of input signal amplitude for the ideal operation of a given receiver. The low end of dynamic range is defined by the noise floor whereas the upper limit is determined by large-signal distortion. While dynamic range can be predicted in the temperature range where compact transistor models are valid, the lack of large-signal models at temperatures below -55 C prevents the prediction and optimization of dynamic range for applications that require cryogenic cooling. For decades, the main goal concerning the performance of these applications was lowering the noise floor of …


Process-Structure-Property Relationships For High Pressure Die-Cast Magnesium Alloys, Pouya Sharifi Jun 2017

Process-Structure-Property Relationships For High Pressure Die-Cast Magnesium Alloys, Pouya Sharifi

Electronic Thesis and Dissertation Repository

The primary goal of this study was to conduct experiments and simulation modeling to determine the relevant filling and solidification process parameters that influence microstructural features of the high-pressure die-cast magnesium alloy AM60. This work continues from the previous research that has been carried out by Dr. Jeff Wood’s research group over the last sixteen years.

Metallographic and spherical microindentation were used to analyze the influence of microstructural features on the flow stress for both skin (finer grain sizes) and core (larger grain sizes) of high pressure die castings (HPDC), as well as different regions of gravity cast stepped-plate. It …


Mechanical Testing Protocol For Characterizing Composite Lamina Pre-Pregs, Kenneth Blain Ainslie, Joshua Gustav Brinkmann Jun 2017

Mechanical Testing Protocol For Characterizing Composite Lamina Pre-Pregs, Kenneth Blain Ainslie, Joshua Gustav Brinkmann

Materials Engineering

Zodiac Aerospace currently employs finite element analysis (FEA) computer models to predict the material behavior of its composite products. The objective of this project was to develop a testing protocol for obtaining detailed material property data to use in these FEA models. With accurate material data, FEA models can reduce the need for expensive physical testing and achieve timely troubleshooting when testing complex components. The specific material characterized in this project was an 8-satin weave fiberglass phenolic pre-preg used as the facesheet material in many of Zodiac’s sandwich panel composites. The developed testing protocol involved mechanical testing of lamina and …


Inkjet Printing Of Nano-Silver Conductive Ink On Pet Substrate, Skyler Jiang Jun 2017

Inkjet Printing Of Nano-Silver Conductive Ink On Pet Substrate, Skyler Jiang

Materials Engineering

Printing of conductive ink traditionally uses copper-based ink and was used on high temperature metal substrates due to the high curing and sintering temperature of copper. In this experiment, however, Metalon JS-B25P nano-silver conductive ink was printed using an Epson Stylus C88+ inkjet printer on polyethylene terephthalate (PET) based Novele printing media made for low temperature applications. With silver’s lower sintering temperature, the nano-silver particles in this ink are desired to be able to sinter at a low enough temperature to be used on the PET substrate. The printed ink traces were cured with a temperature-controlled hotplate at 100℃, 120℃, …


Development Of 3d Compression Molded Composite Primary Structure, Sean D. Tischler, Jacob H. Goldstein, Alea A. Perez Jun 2017

Development Of 3d Compression Molded Composite Primary Structure, Sean D. Tischler, Jacob H. Goldstein, Alea A. Perez

Mechanical Engineering

The work accomplished by the Black Gold team improved upon the carbon fiber compression molding research and information available on the Cal Poly San Luis Obispo campus. The team used the rear suspension rocker arm off a Ventana Alpino mountain bike as a design goal for this project. This research and body of work includes the methods used to design a compression molded part for complex part loading and shape. This extends to the process of choosing an appropriate layup process, in addition to benefits and drawbacks of the use of chopped fibers in compression molding. The research includes the …


Deployable Antenna For Cubesat, Mackenzie Thomas Lennon, Caleb Andrew Barber, David Matthew Galves Jun 2017

Deployable Antenna For Cubesat, Mackenzie Thomas Lennon, Caleb Andrew Barber, David Matthew Galves

Mechanical Engineering

This project is a proof-of-concept ground model of a large deployable antenna designed for the small space requirements of CubeSats. This small deployment module is designed to fit a 2 m by 1 m reflective antenna inside a storage volume of with the dimensions 20 cm by 20 cm x 40 cm. The reflector will be deployed to a parabolic shape with the goal of modeling the reflector necessary for high frequency communication. Because this module is designed as a proof-of-concept for the deployable parabolic reflector specifically, no electrical components will be incorporated and will just focus on the deployment …


The Modification Of A Curtain Coating Formulation: A Study Of Rheology And Surface Tension, And Their Effect On Pitting, Samantha Leigh Schoenfelder Jun 2017

The Modification Of A Curtain Coating Formulation: A Study Of Rheology And Surface Tension, And Their Effect On Pitting, Samantha Leigh Schoenfelder

Masters Theses

When an undisclosed recycled fiber mill installed a “two-slotted” curtain coater to replace their air knife coater, a prominent defect arose known as “pitting,” which is also called pinholing or cratering. Pitting occurs when the coating of the sheet has small holes that mar its surface, which, when clustered together or larger in size, can cause print breakup during the printing process.

Through research, pitting is known to be caused by a boundary layer of air that gets laterally pulled in between the coating and board during their initial contact. Thus, rheological properties and the surface tension of the curtain …


Bear Minimum: Ultralight Composite Bear Canister, Rama B. Adajian, Adam C. Eisenbarth Jun 2017

Bear Minimum: Ultralight Composite Bear Canister, Rama B. Adajian, Adam C. Eisenbarth

Mechanical Engineering

The ultralight backpacking community needs a strong, easy to use, safe bear canister that is lighter than current market products for trekking in the backcountry. A full design of the lid for the bear canister is to be completed. This includes the locking mechanism to ensure it is bear proof, the interface between the lid and the canister, and the structure of the lid so it passes the strength and weight specifications. The lid, along with the already designed canister body, is to be manufactured with formal documentation. The lid will initially be tested separately and then with the canister …


Study On The Mechanical Behavior Of Directly Compounded Long Glass Fiber Reinforced Polyamide 6 Composites, Yuchao Liu May 2017

Study On The Mechanical Behavior Of Directly Compounded Long Glass Fiber Reinforced Polyamide 6 Composites, Yuchao Liu

Electronic Thesis and Dissertation Repository

With great lightweight potential, high performance-to-cost ratio and mass productivity, direct-compounded long fiber thermoplastics (D-LFT) have drawn great attention from the automotive industry. With better mechanical properties and higher service temperature, polyamide 6 (PA6) was used to replace polypropylene (PP) which is almost the exclusively used matrix for the D-LFT process currently. The investigation was performed on this new material with a focus on the effect of fiber content, processing parameters, temperature and tailored reinforcement on mechanical behavior. The results show that the mechanical properties of this new material are sensitive to the variation of fiber content and service temperature …


Characterizing Structure, Properties, And Deformation In Metallic Glasses And Olivine Using Instrumented Nanoindentation, Kelly Kranjc May 2017

Characterizing Structure, Properties, And Deformation In Metallic Glasses And Olivine Using Instrumented Nanoindentation, Kelly Kranjc

McKelvey School of Engineering Theses & Dissertations

Micro- and nanomechanical testing can provide significant insight about the structure, properties, and behavior of materials. These techniques are nondestructive, require only limited amounts of material, and have been known to detect a brittle-to-ductile transition in mechanical behavior due to a size effect. This work utilizes this type of testing to explore fundamental questions about the structure, properties, and behavior of two disparate material systems: metallic glasses and olivine.

Metallic glasses are metallic alloys devoid of any long-range order. Their unique atomic structure imbues them with properties such as a high elastic strain limit, near-theoretical strengths, and the ability to …