Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Engineering

Numerical Simulation Of Laser Induced Elastic Waves In Response To Short And Ultrashort Laser Pulses., Alireza Zarei May 2024

Numerical Simulation Of Laser Induced Elastic Waves In Response To Short And Ultrashort Laser Pulses., Alireza Zarei

All Dissertations

In an era of intensified market competition, the demand for cost-effective, high-quality, high-performance, and reliable products continues to rise. Meeting this demand necessitates the mass production of premium products through the integration of cutting-edge technologies and advanced materials while ensuring their integrity and safety. In this context, Nondestructive Testing (NDT) techniques emerge as indispensable tools for guaranteeing the integrity, reliability, and safety of products across diverse industries.

Various NDT techniques, including ultrasonic testing, computed tomography, thermography, and acoustic emissions, have long served as cornerstones for inspecting materials and structures. Among these, ultrasonic testing stands out as the most prevalent method, …


Microscale Transverse Compression Modeling: A Comparative Study Of The Analytical Mac/Gmc Methods To Experimental Results, Emily Zeitunian Jan 2022

Microscale Transverse Compression Modeling: A Comparative Study Of The Analytical Mac/Gmc Methods To Experimental Results, Emily Zeitunian

Dissertations, Master's Theses and Master's Reports

Composite materials require a multi-scale approach to fully understand its behavior. At the micro level, material behavior analysis is conducted most often using numerical or analytical approaches. These models, however, require validation from experimental data to ensure material predictions are accurate. This study compares a semi-analytical micromechanical analysis tool, MAC/GMC, to experimental results of in-situ microscale transverse compression testing conducted at AFRL facilities. Effective properties, stress-strain curves, stress and strain fields, and damage predictions are compared with experimental outputs. Both generalized method of cells (GMC) and high-fidelity generalized method of cells (HFGMC) theories implemented within MAC/GMC show results that agree …


Experimental And Computational Analysis Of Progressive Failure In Bolted Hybrid Composite Joints, John S. Brewer Dec 2020

Experimental And Computational Analysis Of Progressive Failure In Bolted Hybrid Composite Joints, John S. Brewer

Theses and Dissertations

Composite materials are strong, lightweight, and stiff making them desirable in aerospace applications. However, a practical issue arises with composites in that they behave unpredictably in bolted joints, where damage and cracks are often initiated. This research investigated a solution to correcting the problem with composite bolted joints. A novel hybrid composite material was developed, where thin stainless steel foils were placed between and in place of preimpregnated composite plies during the cure cycle to reinforce stress concentrations in bolted joints. This novel composite was compared to control samples experimentally in quasi-static monotonic loading in double shear configuration in 9-ply …


Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller May 2019

Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller

Graduate Theses and Dissertations

Materials with features at the nanoscale can provide unique mechanical properties and increased functionality when included as part of a nanocomposite. This dissertation utilizes computational methods at multiple scales, including molecular dynamics (MD) and density functional theory (DFT), and the coupled atomistic and discrete dislocation multiscale method (CADD), to predict the mechanical properties of nanocomposites possessing nanomaterials that are either 1-D (carbyne chains), 2-D (graphene sheets), or 3-D (Al/amorphous-Si core-shell nanorod).

The MD method is used to model Ni-graphene nanocomposites. The strength of a Ni-graphene nanocomposite is found to improve by increasing the gap between the graphene sheet and a …


Effective Magnetic And Electric Response Of Composite Materials, Mona Hassan Alsaleh Nov 2018

Effective Magnetic And Electric Response Of Composite Materials, Mona Hassan Alsaleh

Doctoral Dissertations

Metamaterials (MMs) are nanocomposite materials consisting of metal-dielectric resonators much smaller in size than the wavelength of the incident light. Common examples of metamaterials are based on split ring resonators (SRRs), parallel wires or strips and fishnet structures. These types of materials are designed and fabricated in order to provide unique optical responses to the incident electromagnetic radiation that are not available in naturally existing materials. The MMs can exhibit unusual properties such as strong magnetism at terahertz (THz) and optical frequencies. Additionally, negative index materials (NIMs) can provide negative index of refraction which can be used in many applications …


Development And Thermal Characterization Of Cellulose/Clay Nanocomposites, Christopher D. Delhom Jan 2009

Development And Thermal Characterization Of Cellulose/Clay Nanocomposites, Christopher D. Delhom

LSU Master's Theses

Cotton is the most important textile fiber for apparel use and is preferred to synthetic fibers for reasons such as comfort and feel. Cotton may also be used to produce the regenerated cellulose fibers, such as lyocell and viscose, which have numerous textile applications. A major drawback of cotton, and other cellulosic fibers, is its inherent ability to burn. Many finishes have been developed to impart flame resistance to cotton. These finishes have limited use in textiles for apparel due to problems with the finish not being durable during laundering and increasing the susceptibility of the fabric to wear. Most …


A Novel Method Characterizing The Impact Response Of Functionally Graded Plates, Reid A. Larson Sep 2008

A Novel Method Characterizing The Impact Response Of Functionally Graded Plates, Reid A. Larson

Theses and Dissertations

Functionally graded material (FGM) plates are advanced composites with properties that vary continuously through the thickness of the plate. Metal-ceramic FGM plates have been proposed for use in thermal protection systems where a metal-rich interior surface of the plate gradually transitions to a ceramic-rich exterior surface of the plate. The ability of FGMs to resist impact loads must be demonstrated before using them in high-temperature environments in service. This dissertation presents a novel technique by which the impact response of FGM plates is characterized for low-velocity, low- to medium-energy impact loads. An experiment was designed where strain histories in FGM …


Some Aspects Of The Mechanical Response Of Pmr-15 Neat Resin At 288°C: Experiment And Modeling, Christina M. Falcone Sep 2006

Some Aspects Of The Mechanical Response Of Pmr-15 Neat Resin At 288°C: Experiment And Modeling, Christina M. Falcone

Theses and Dissertations

The mechanical response of PMR-15 neat resin was investigated at 288?C. Monotonic loading/unloading tests performed at several constant stress rates revealed considerable rate dependence, especially on the unloading path. Effect of prior stress rate on creep behavior was evaluated in creep tests preceded by uninterrupted loading to a target stress. Creep response was dependent on the prior stress rate. Effect of loading history was studied in stepwise creep tests, where specimens were subjected to a constant stress rate loading followed by unloading to zero stress with intermittent creep periods during both loading and unloading. Comparison of creep strains accumulated during …


Application Of Spline Variational Analysis Method In The Modeling Of Composite Repairs, Brian M. Fredrickson Mar 2006

Application Of Spline Variational Analysis Method In The Modeling Of Composite Repairs, Brian M. Fredrickson

Theses and Dissertations

The purpose of this thesis is to apply a non-commercialized spline-based (BSpline Analysis Method or BSAM) computer program to model and predict strain fields in two composite repairs, a scarf joint and a stepped-lap joint, subjected to static tensile loading. Test specimens with scarf and stepped-lap joints are fabricated using quasiisotropic sixteen ply panels made from IM6/3501-6 prepreg with a [+452/02/-452/902]s lay-up. The panels were bonded together with FM-300M (0.05psf), a 176°C cure film adhesive, under positive pressure. A total of five coupons of each joint type are made. Two of …


Creep-Rupture And Fatigue Behaviors Of Notched Oxide/Oxide Ceramic Matrix Composite At Elevated Temperature, Mark A. Sullivan Mar 2006

Creep-Rupture And Fatigue Behaviors Of Notched Oxide/Oxide Ceramic Matrix Composite At Elevated Temperature, Mark A. Sullivan

Theses and Dissertations

Oxide/oxide composites are being considered for use in high temperature aerospace applications where their inherent resistance to oxidation provides for better long life properties at high temperature than most other ceramic matrix composites (CMCs). One promising oxide/oxide CMC is Nextel 720/A (N720/A) which uses an 8-harness satin weave (8HSW) of Nextel 720 fibers embedded in a porous alumina matrix. Possible aerospace applications for N720/A will likely require inserting holes into the material for mounting and cooling purposes. The notch characteristics must be understood to ensure designs using the material are sufficient for the desired application. This research effort examined the …


Reduction Of Thermal Residual Strains In Adhesively Bonded Composite Repairs, Heather R. Crooks Mar 2003

Reduction Of Thermal Residual Strains In Adhesively Bonded Composite Repairs, Heather R. Crooks

Theses and Dissertations

Many military and commercial aircraft are being called upon to fly well beyond their original intended service lives. This has forced the United States Air Force (USAF) to increasingly rely on structural repairs to address fatigue induced damage and to extend aircraft useful life. The focus of this research is the use of a high-strength composite patch technique to repair a fatigue crack on an aluminum aircraft structure. This study investigates the thermal residual strains that occur as a direct result of the coefficient of thermal expansion (CTE) mismatch between the repair patch and the underlying cracked metallic structure to …


Mechanics Of A Functionally-Graded Titanium Matrix Composite, G. Brandt Miller Mar 2000

Mechanics Of A Functionally-Graded Titanium Matrix Composite, G. Brandt Miller

Theses and Dissertations

Functionally-graded Titanium Matrix Composites, (F/G TMCs) combine the ideal properties of titanium matrix composites with the more practical machining qualities of monolithic (unreinforced) alloy. This material shows great promise in application to aerospace structural components - even in parts whose design requirements have defied the use of composite materials in the past. Successful implementation of such a material would lead to enhanced aircraft performance. However, the basic properties of a functionally-graded titanium matrix composite need to be investigated. The composite/alloy transition region, or joint area, may be less strong than its constituents and therefore determine the overall performance of the …


Progressive Failure Analysis Of Composite Panels, Stephen M. Spottswood Mar 1999

Progressive Failure Analysis Of Composite Panels, Stephen M. Spottswood

Theses and Dissertations

The objective of this research was to determine the physical response, including material failure, of a curved composite panel designed to resist transverse loading. The cause of the material failure, in the form of delamination, fiber and/or matrix failure, was determined through various criterion based on non-linear movement using a finite element analysis technique. Data generated both with and without the addition of progressive failure criteria, was compared with previously published experimental data, noting where the theory diverges from the experimental results. The inclusion of various failure criterion, to include maximum stress, Lee, and Hashin, provided a more realistic representation …


Fatigue Response Of Repaired Thick Aluminum Panels With Bondline Flaws, David S. Conley Mar 1999

Fatigue Response Of Repaired Thick Aluminum Panels With Bondline Flaws, David S. Conley

Theses and Dissertations

his research investigated the fatigue response of precracked 558 x 177.8 x 6.35 mm (22.0 x 7.0 x 0.25 in) 2024-T351 aluminum panels repaired with single-sided partially bonded, unidirectional, eighteen ply boron/epoxy reinforcements. Disbonds were introduced into the bondline of each repair during the adhesion process using teflon inserts. Five different disbond configurations, with varying disbond locations and sizes, were tested. Each repaired panel was subjected to constant amplitude cyclic fatigue loading with a maximum stress of 120MPa. Results from the different configurations were compared against one another and against repaired panels with no debonds to assess the effect of …


Nonlinear Geometric And Material Behavior Of Composite Shells With Large Strains, Scott A. Schimmels Aug 1995

Nonlinear Geometric And Material Behavior Of Composite Shells With Large Strains, Scott A. Schimmels

Theses and Dissertations

A two-dimensional, geometrically and materially nonlinear shell theory applicable to arbitrary geometries described by orthogonal curvilinear coordinates and encompassing large displacements, moderate rotations for large strain situations has been developed. Additionally, the theory includes Jacobian transformation matrices, based upon displacement parameters, for the Cauchy - 2nd Piola-Kirchhoff stress-state and the Cauchy (Almansi) - Green strain-state transformations, and a layered material approach is included for the elastoplastic analysis to allow for variation of plasticity through-the-thickness. Doubly curved 20, 28, and 36 degree-of-freedom finite elements are defined based on specialization of the theory to spherical coordinates. The computer program includes algorithms for …


Investigation Into The Behavior Of Geometrically Nonlinear Composite Arches, John C. Bailey Dec 1994

Investigation Into The Behavior Of Geometrically Nonlinear Composite Arches, John C. Bailey

Theses and Dissertations

This research modifies the existing finite element formulation of a potential energy based large deformation and moderate rotation theory. Hermitian shape functions replace the existing linear bending angle interpolations. Negligible differences between the two formulations indicate the underlying kinematics limit the accuracy, not the finite element interpolations. Using the new program, numerous nonlinear arch geometries are modeled to investigate the effects of arc length and thickness variations. Local and global snapping phenomena are captured as well as through the thickness shear driven nonlinearities.


An Experimental And Analytical Investigation Of The Iosipescu Shear Test For Composite Materials, Barry Stuart Spigel Jul 1994

An Experimental And Analytical Investigation Of The Iosipescu Shear Test For Composite Materials, Barry Stuart Spigel

Mechanical & Aerospace Engineering Theses & Dissertations

Mechanical properties of composite materials under shear loading are difficult to determine. The Iosipescu Shear test, originally proposed for metals, has in recent years been applied to composites. It has the advantages of small specimen size, simple loading and a reasonably uniform shear stress in the test section.

The purpose of this work is to study the validity of the Iosipescu test method for measuring the shear modulus and shear strength of composites. Finite element analyses indicate that optimum specimen geometry and load locations depend upon the degree of orthotropy of the composite. Test results for a quasi-isotropic graphite/epoxy laminate …


Influence Of Embedded Optical Fibers On Compressive Strength Of Advanced Composites, Stefan B. Dosedel Dec 1993

Influence Of Embedded Optical Fibers On Compressive Strength Of Advanced Composites, Stefan B. Dosedel

Theses and Dissertations

This study investigated the effects of embedding optical fibers into advanced composite materials. This combination was meant to simulate 'smart structures' that have been shown to sense several different variables in the composite including strain, temperature, and damage. A laminate orientation taken from an existing aircraft structure was used to fabricate sixteen groups of specimens which were subjected to compression testing in an IITRI fixture to determine the ultimate compressive strength and modulus of elasticity. Ten of these groups were fabricated with optical fibers while the other six were control groups and contained no optical fibers. This study showed that …


An Experimental And Analytical Investigation Of The Iosipescu Shear Test For Composite Materials, Barry Stuart Spigel Jul 1984

An Experimental And Analytical Investigation Of The Iosipescu Shear Test For Composite Materials, Barry Stuart Spigel

Mechanical & Aerospace Engineering Theses & Dissertations

Mechanical properties of composite materials under shear loading are difficult to determine. The Iosipescu Shear test, originally proposed for metals, has in recent years been applied to composites. It has the advantages of small specimen size, simple loading and a reasonably uniform shear stress in the test section.

The purpose of this work is to study the validity of the Iosipescu test method for measuring the shear modulus and shear strength of composites. Finite element analyses indicate that optimum specimen geometry and load locations depend upon the degree of orthotropy of the composite. Test results for a quasi-isotropic graphite/epoxy laminate …