Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Energy Systems

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 31 - 60 of 560

Full-Text Articles in Engineering

Super P-Sulfur Cathodes For Quasi-Solid-State Lithium-Sulfur-Batteries., Milinda Bharatha Kalutara Koralalage May 2023

Super P-Sulfur Cathodes For Quasi-Solid-State Lithium-Sulfur-Batteries., Milinda Bharatha Kalutara Koralalage

Electronic Theses and Dissertations

Lithium-Sulfur (Li-S) batteries have become a promising candidate to meet the current energy storage demand, with its natural abundance of materials, high theoretical capacity of 1672 mAhg-1, high energy density of 2600 Whkg-1, low cost and lower environmental impact. Sulfide based solid state electrolytes (SSEs) have received greater attention due to their higher ionic conductivity, compatible interface with sulfur-based cathodes, and lower grain boundary resistance. However, the interface between SSEs and cathodes has become a challenge in all solid-state Li-S batteries due to the rigidity of the participating surfaces. A hybrid electrolyte containing SSE coupled with a small amount of …


Heat Transfer Characteristics Of Latent Heat Thermal Energy Storage, Kedar Prashant Shete Apr 2023

Heat Transfer Characteristics Of Latent Heat Thermal Energy Storage, Kedar Prashant Shete

Doctoral Dissertations

Latent heat thermal energy storage (LHTES) systems can be used to reduce electric demand when used in conjunction with Combined Heat and Power Plants or HVAC(Heating, Ventilation, Refrigeration and Air-Conditioning), as they can regulate the demand and supply of thermal energy. They can also be used to integrate renewable energy sources with the grid. A design procedure and performance modeling is required for designing and using thermal energy storage systems effectively. We propose hypotheses about the performance of an LHTES device with different operating conditions and material properties, for devices that are governed by different modes of heat transfer. We …


Wind-Wave Misalignment Effects On Multiline Anchor Systems For Floating Offshore Wind Turbines, Doron T. Rose Apr 2023

Wind-Wave Misalignment Effects On Multiline Anchor Systems For Floating Offshore Wind Turbines, Doron T. Rose

Masters Theses

Multiline anchors are a novel way to reduce the cost of arrays of floating offshore wind turbines (FOWTs), but their behavior is not yet fully understood. Through metocean characterization and dynamic simulations, this thesis investigates the effects of wind-wave misalignment on multiline anchor systems. Four coastal U.S. sites are characterized in order to develop IEC design load cases (DLCs) and analyze real-world misaligned conditions. Stonewall Bank, Oregon showed the highest 500-year extreme wave height, at 16.6 m, while Virginia Beach, Virginia showed the highest 500-year wind speed, at 56.8 m/s. Misalignment probability distributions, at all sites, are found to converge …


Additive Manufacturing For Phase Change Thermal Energy Storage And Management, Thomas B. Freeman Apr 2023

Additive Manufacturing For Phase Change Thermal Energy Storage And Management, Thomas B. Freeman

Doctoral Dissertations and Master's Theses

Phase change materials can enhance the performance of energy systems by time shifting or reducing peak thermal loads. Certain electronic devices such as batteries, laser systems, or electric vehicle power electronics are highly transient and require pulse heat dissipation. Heat sinks, or thermal management devices made of a phase change material can absorb large heat spikes while maintaining a constant temperature. Additive manufacturing techniques hold tremendous potential to enable co-optimization of material properties and device geometry, while potentially reducing material waste and manufacturing time. Recently, a few efforts have emerged that employ additive manufacturing techniques to integrate a phase change …


Estimating Solar Energy Production In Urban Areas For Electric Vehicles, Shaimaa Ahmed Jan 2023

Estimating Solar Energy Production In Urban Areas For Electric Vehicles, Shaimaa Ahmed

Theses and Dissertations

Cities have a high potential for solar energy from PVs installed on buildings' rooftops. There is an increased demand for solar energy in cities to reduce the negative effect of climate change. The thesis investigates solar energy potential in urban areas. It tries to determine how to detect and identify available rooftop areas, how to calculate suitable ones after excluding the effects of the shade, and the estimated energy generated from PVs. Geographic Information Sciences (GIS) and Remote Sensing (RS) are used in solar city planning. The goal of this research is to assess available and suitable rooftops areas using …


Design And Simulation Analysis Of A Bipv (Building Integrated With Pv) Air-Duct System For Residential High-Performance Development, Arash Zarmehr Jan 2023

Design And Simulation Analysis Of A Bipv (Building Integrated With Pv) Air-Duct System For Residential High-Performance Development, Arash Zarmehr

Electronic Theses and Dissertations, 2020-

A growing number of buildings are integrating building-integrated photovoltaics (BIPV) devices to increase energy efficiency and reduce energy costs. A building's heating and cooling loads are impacted by the thermal resistance of the air duct BIPV because of the change in thermal resistance. Therefore, augmenting the efficiency of (BIPV) devices will benefit many building architectures and mechanical engineering applications. This work introduces a low-cost and low- maintenance air duct system design augmenting BIPV systems. This novel approach increases airflow velocity and decreases air temperature for BIPV, resulting in improved performance for the PV system electricity output, increased PV lifespan due …


Assessing The Economic Feasibility Of Capturing And Utilizing Carbon Dioxide From Ethanol Production In South Dakota, Makiah Stukel Jan 2023

Assessing The Economic Feasibility Of Capturing And Utilizing Carbon Dioxide From Ethanol Production In South Dakota, Makiah Stukel

Electronic Theses and Dissertations

Since the Industrial Revolution, anthropogenic greenhouse gas (GHG) emissions have spiked dramatically, prompting discussions on climate change. Mitigating climate change requires significant reductions in global carbon dioxide (CO2) emissions as CO2 is the most abundant anthropogenic GHG. A process that assists in offsetting the exponential growth in CO2 emissions is carbon capture and storage (CCS). Integrating carbon capture technology into the ethanol industry can provide an economically feasible way to achieve net reductions in CO2 emissions. The proposed work investigates the economic viability of applying CCS technologies to the 16 ethanol facilities in South Dakota (SD) and quantifies the potential …


Capturing Microstructural Heterogeneity And Predicting Local Transport Phenomena In Pemfc Catalyst Layers: A Comprehensive Network Modeling Approach, Shahriar Alam Jan 2023

Capturing Microstructural Heterogeneity And Predicting Local Transport Phenomena In Pemfc Catalyst Layers: A Comprehensive Network Modeling Approach, Shahriar Alam

Dissertations, Master's Theses and Master's Reports

A unique network architecture that captures the microstructural heterogeneity and predicts the local transport properties of PEMFC catalyst layers is proposed. Separate networks containing numerous cylindrical elements and nodes are generated that represent the solid and pore phase of the catalyst layer. Transport resistances are assigned to the elements while the nodes are volumeless. The networks are interlinked through nodes where local properties are stored. The generated computational grid's macroscopic behaviors (percolation behavior, gas diffusivity, and ion conductivity) will be matched against the experimental data for validation. Diffusion-like transport equations are applied to the networks that provide local water balance, …


On The Gaussian-Core Vortex Lattice Model For The Analysis Of Wind Farm Flow Dynamics, Apurva Baruah Jan 2023

On The Gaussian-Core Vortex Lattice Model For The Analysis Of Wind Farm Flow Dynamics, Apurva Baruah

Dissertations, Master's Theses and Master's Reports

Wind power science has seen tremendous development and growth over the last 40 years. Advancements in design, manufacturing, installation, and operation of wind turbines have enabled the commercial deployment of wind power generation systems. These have been due, in a large part, to the expertise in the simulation and modeling of individual wind turbines. The new generation of wind energy systems calls for a need to accurately predict and model the entire wind farm, and not just individual turbines. The commercial deployment of these wind farms depends on model's ability to accurately capture the different physics involved, each at its …


Lithium-Ion Battery Safety Analysis With Physical Sub-Models, Samuel Abimbola Ogunfuye Jan 2023

Lithium-Ion Battery Safety Analysis With Physical Sub-Models, Samuel Abimbola Ogunfuye

Graduate Theses, Dissertations, and Problem Reports

Ever-increasing explosions occurring globally at a rapid rate and in diverse situations have re-established the fact that novel, faster, and more accurate approaches must be developed to analyze and possibly curb these explosions and avert their future occurrences. Experimental endeavors and computational fluid dynamics (CFD) simulations as compared to engineering models generally require enormous time, and resources, as well as a high-level of expertise and technicalities. This might, however, delay prompt analysis and the ability to draw conclusions, thereby causing setbacks in recommending safety measures for different situations and conditions. Therefore, robust models which are accurate and fast to give …


Mechanical Energy Harvester For Powering Rfid Systems Components: Modeling, Analysis, Optimization And Design, Alireza Babaei Jan 2023

Mechanical Energy Harvester For Powering Rfid Systems Components: Modeling, Analysis, Optimization And Design, Alireza Babaei

Theses and Dissertations--Mechanical Engineering

Finding alternative power sources has been an important topic of study worldwide. It is vital to find substitutes for finite fossil fuels. Such substitutes may be termed renewable energy sources and infinite supplies. Such limitless sources are derived from ambient energy like wind energy, solar energy, sea waves energy; on the other hand, smart cities megaprojects have been receiving enormous amounts of funding to transition our lives into smart lives. Smart cities heavily rely on smart devices and electronics, which utilize small amounts of energy to run. Using batteries as the power source for such smart devices imposes environmental and …


A Techno-Economic Analysis To Determine The Levelized Cost Of Hydrogen Generation Through Electrolysis For Humboldt Transit Authority, Humboldt County, California, Deepak Tripathi Jan 2023

A Techno-Economic Analysis To Determine The Levelized Cost Of Hydrogen Generation Through Electrolysis For Humboldt Transit Authority, Humboldt County, California, Deepak Tripathi

Cal Poly Humboldt theses and projects

Abstract

This thesis aims to investigate the techno-economic feasibility of on-site electrolysis-based hydrogen generation for the Humboldt Transit Authority (HTA), focusing on determining the levelized cost of hydrogen (LCOH) for various system configurations and utility rate schedules. The study recommends using a 2.5 MW electrolyzer with the B-20 (T) utility rate schedule along with an E-GT rate supplement provided by PG&E as the most cost-effective solution to meet HTA's projected hydrogen demand. This demand is currently based on the utilization of 11 H2 fuel cell buses, which is further expected to grow to 21 buses, and estimated public use …


Technical And Economic Feasibility Of A Microgrid For A Fire Station In Humboldt County, California., Nishaant Kumar Sinha Jan 2023

Technical And Economic Feasibility Of A Microgrid For A Fire Station In Humboldt County, California., Nishaant Kumar Sinha

Cal Poly Humboldt theses and projects

Microgrids are emerging as a promising solution to unreliable grid energy. Today, California is not only witnessing grid resiliency challenges from natural disasters such as wildfires, earthquakes, floods and heatwaves, but it is also seeking to green the grid and bring more renewables online. For example, Humboldt County, where this project is focused, has recently experienced an earthquake of 6.4M (on December 22nd, 2022), which shut down the regional grid for ~20 hours.

Microgrid adoption enables critical facilities to operate seamlessly. The Humboldt Bay Fire Station (HBFS) No.1 is one such example, where first responders work to protect citizens against …


System Analysis Of An Internal Combustion Engine (Ice) – Solid Oxide Fuel Cell (Sofc) Hybrid Cycle, Jose Javier Colon Rodriguez Jan 2023

System Analysis Of An Internal Combustion Engine (Ice) – Solid Oxide Fuel Cell (Sofc) Hybrid Cycle, Jose Javier Colon Rodriguez

Graduate Theses, Dissertations, and Problem Reports

Due to the intermittent nature of renewable energy and the rigid operation of existing coal plants, the need for flexible power generation technology is eminent. Hybrid energy systems have shown potential for flexible, grid following dynamics while maintaining higher efficiencies. The work below focuses on the performance analysis of a proposed 100 kW pressurized Internal Combustion Engine (ICE) and Solid Oxide Fuel Cell (SOFC) hybrid system. The un-utilized fuel from the SOFC stack provided the chemical energy to operate the engine. A turbocharger was used to deliver the necessary air flow for both the stack and engine. An external reformer …


Evaluating Electrification Of Fossil Fuel-Fired Boilers For Decarbonization Using Discrete Event Simulation, Nahian Ismail Chowdhury Jan 2023

Evaluating Electrification Of Fossil Fuel-Fired Boilers For Decarbonization Using Discrete Event Simulation, Nahian Ismail Chowdhury

Graduate Theses, Dissertations, and Problem Reports

Decarbonizing fossil fuel usage is crucial in mitigating the impacts of climate change. CO2, which comprises the major portion of greenhouse gas, is emitted from burning fossil fuels. One of the significant sources of fossil fuel user is industrial process heating, and most of the heating in industrial processes is achieved through boilers. Electrification is a promising solution for decarbonizing these boilers, as it enables renewable energy sources to generate electricity, which can then be used to power the electric boilers. The electrification of boilers can reduce greenhouse gas emissions, improve air quality, and increase energy efficiency. However, it requires …


Combustion Characteristics Of Methane, Ethane, Propane, And Butane Blends Under Conditions Relevant Of A Dual-Fuel Diesel And Natural Gas Engine, Christopher Joseph Ulishney Jan 2023

Combustion Characteristics Of Methane, Ethane, Propane, And Butane Blends Under Conditions Relevant Of A Dual-Fuel Diesel And Natural Gas Engine, Christopher Joseph Ulishney

Graduate Theses, Dissertations, and Problem Reports

As natural gas production infrastructure is already in place in most of the world and will continue expanding for the foreseeable future, natural gas is an alternative to traditional liquid petroleum fuels in heavy-duty engines. Dedicated natural gas or dual-fuel diesel-natural gas heavy-duty engines are alternatives to diesel-only power generation equipment. One challenge is the large variation in the natural gas composition available for such applications, which is known to significantly affect engine’s combustion characteristics and the emissions composition. As the literature on dual-fuel combustion under low load engine operating conditions that use more realistic natural gas mixtures (i.e., mixtures …


Machine Learning Approach To Investigate Ev Battery Characteristics, Shayan Falahatdoost Dec 2022

Machine Learning Approach To Investigate Ev Battery Characteristics, Shayan Falahatdoost

Major Papers

The main factor influencing an electric vehicle’s range is its battery. Battery electric vehicles experience driving range reduction in low temperatures. This range reduction results from the heating demand for the cabin and recuperation limits by the braking system. Due to the lack of an internal combustion engine-style heat source, electric vehicles' heating system demands a significant amount of energy. This energy is supplied by the battery and results in driving range reduction. Moreover, Due to the battery's low temperature in cold weather, the charging process through recuperation is limited. This limitation of recuperation is caused by the low reaction …


Development Of A Computationally Efficient Method For Modelling Thermal Energy Storage In Packed Beds Of Spherically Encapsulated Phase Change Material, Colin Jaffray Dec 2022

Development Of A Computationally Efficient Method For Modelling Thermal Energy Storage In Packed Beds Of Spherically Encapsulated Phase Change Material, Colin Jaffray

Electronic Thesis and Dissertation Repository

A novel computationally efficient method for modelling melting and solidification processes in packed beds of PCM encapsulated spheres is introduced. The proposed method involves the full discretization of only one centrally located sphere to fully simulate the phase change process, while treating all other spheres in the packed bed as voids with boundary conditions derived from the simulated sphere. At each time step, the computed heat transfer parameters on the exterior surface of the simulated sphere undergoing the phase change process are extracted, and imposed as boundary conditions on surrounding spheres. The proposed method results in a significant reduction in …


Diffusion-Dependent Electrodes For All-Solid-State Lithium-Ion Batteries, Peiman Mardani Dec 2022

Diffusion-Dependent Electrodes For All-Solid-State Lithium-Ion Batteries, Peiman Mardani

Electronic Thesis and Dissertation Repository

Electrode design, which is closely related to electronic and ionic transport, has a significant impact on all-solid-state batteries' performance. Typically, a combination of the active material and solid electrolyte serves as the electrode for all-solid-state batteries. An effective scaling technique to spatially organize the two components is essential for high-performance all-solid-state batteries. Here, an electrode design for all-solid-state batteries is given with a higher energy density than the typical composite-type electrode. The first section of the thesis presents a simple electrode design that primarily consists of blended active materials of graphite and phosphorus to meet the demands of all-solid-state batteries …


Numerical Study Of Advanced Solar Receiver Tubes Based On A Coupled Thermo-Mechanical Analysis For Concentrated Solar Power Tower Plant, Shawn Michael Hatcher Dec 2022

Numerical Study Of Advanced Solar Receiver Tubes Based On A Coupled Thermo-Mechanical Analysis For Concentrated Solar Power Tower Plant, Shawn Michael Hatcher

Theses and Dissertations

The search for more sustainable energy to match the growing energy demand begins with finding more dispatchable resources such as solar energy. As one of the promising solar technologies, concentrated solar power (CSP) has a full capacity to store thermal energy for extended operation. Nevertheless, some key components in CSP systems usually face extreme environment, such as uneven solar flux, cyclic thermal expansion, structural degradation on the solar absorber tubes in a Concentrated Solar Power Tower (CSPT) Plant. In this study, we applied Multiphysics simulation to explore the benefits of introducing optimized fins for heat transfer enhancement and uniform temperature …


Multiscale Investigation Of Freeze Cast Process And Ion Transport For Graphene Aerogel Electrodes, Yu-Kai Weng Dec 2022

Multiscale Investigation Of Freeze Cast Process And Ion Transport For Graphene Aerogel Electrodes, Yu-Kai Weng

Doctoral Dissertations

Effective use of renewable energy resources has been regarded as the most promising solution to climate emergency and energy crisis. However, the fluctuating and intermittent nature of renewable resources causes stability issues in the electric grid. High-capacity electrical energy storage is essential to stabilize the electric power supply using renewable resources. Among various types of energy storage systems, organic redox flow battery (ORFB) has attracted attentions due to their high stability, flexibility, low cost, and environmental compatibility, but the performance of the ORFB still needs a significant improvement due to their low energy or current density. Specifically, even though the …


Gasifier Wall Wash Manifold, Ashley Sieu Che, Gintaras Julius Baipsys, Peyton Joseph Archibald, Michael Thomas Kieran Dec 2022

Gasifier Wall Wash Manifold, Ashley Sieu Che, Gintaras Julius Baipsys, Peyton Joseph Archibald, Michael Thomas Kieran

Mechanical Engineering

The objective of our Gasifier Wall Wash Manifold Project is to design three different manifolds that will uniformly distribute water on the inner diameter of a pressure vessel. Also, the distributed water should completely cover the circumference of the inner walls. From extensive research of current solutions as well as the conduction of technical analyses, we were able to produce three designs that would be able to meet our engineering specifications. Time constraints led to the fabrication of one manifold design along with a test rig. With a fully functional test rig, we saw positive results from our design verification …


Numerical Investigation Of Flow And Thermal Behavior In Channels With Pcm-Filled Thermal Energy Storage Columns For Potential Application In Photobioreactors, Sameed Akber Aug 2022

Numerical Investigation Of Flow And Thermal Behavior In Channels With Pcm-Filled Thermal Energy Storage Columns For Potential Application In Photobioreactors, Sameed Akber

Electronic Thesis and Dissertation Repository

Microalgae has been identified as a potential source in the production of biofuel. Photobioreactors, which are used for microalgae production, normally experience temperature variations over the diurnal cycle due to changes in ambient conditions. The thermal regulation of photobioreactors to minimize temperature variations will result in a higher yield of microalgae, which are sensitive to such variations. The present research is aimed to investigate a novel approach to thermally regulate photobioreactors using phase change materials (PCM) where the latent heat of the material is exploited as the energy storage. The present research uses a numerical approach to study the flow …


Comparison Of Layered Nickel Cobalt Manganese Oxide Cathodes With Different Compositions And Morphologies In Lithium-Ion Batteries, Fanny Poon Aug 2022

Comparison Of Layered Nickel Cobalt Manganese Oxide Cathodes With Different Compositions And Morphologies In Lithium-Ion Batteries, Fanny Poon

Electronic Thesis and Dissertation Repository

The revolutionary rechargeable lithium-ion battery paves the way for environmentally-friendly applications such as electric vehicles. Nevertheless, further improvements are required to match or exceed the performance of conventional internal combustion engine vehicles, such as higher energy density, faster charging speed, longer lifetime, better safety and lower cost. Lithium layered nickel cobalt manganese oxides (NCM) are a popular choice of cathode material, but they still suffer from problems such as cation mixing, volume changes, microcracking, surface side reactions, high temperature performance issues and structural reconstruction. This thesis compares various NCM materials to figure out what guidelines should be followed to improve …


Applications Of Thermal Energy Storage With Electrified Heating And Cooling, Erich Ryan Jun 2022

Applications Of Thermal Energy Storage With Electrified Heating And Cooling, Erich Ryan

Masters Theses

With a clear correlation between climate change and rising CO2 emissions, decarbonization has garnered serious interest in many sectors to limit the adverse effects of global warming. Heating and cooling systems have been a focus of decarbonization efforts, with heat pumps becoming more popular in the United States and abroad. In fact, heating, ventilation, and air conditioning accounts for nearly 27% of total energy use in the United States [1]. Ground source heat pumps (GSHP) utilizing borehole heat exchangers (BHE) have been shown to be an effective method of electrifying heating and cooling systems, maintaining some of the best …


Mmteg Heatsink Design, Peyton Nienaber, Kadin Feldis, Alec Savoye, Jack Waeschle Jun 2022

Mmteg Heatsink Design, Peyton Nienaber, Kadin Feldis, Alec Savoye, Jack Waeschle

Mechanical Engineering

In this document, Cal Poly Senior Design Team F16 presents a summary of its work developing a suitable heatsink for Gas Technology Institute’s Methane Mitigation Thermoelectric Generator. After several months of iterating between experimental testing and simulated heat transfer, a suitable prototype was selected for use in further refining simulation parameters. This was called the structural prototype and it allowed Team F16 to confirm several remaining unknowns relating to component thermal conductivity. All documentation of this process can be found in Preliminary, Critical, and Interim Design Review documents (PDR, CDR, IDR), included in this report. Having a realistic model …


Solid Thermal Storage As An Energy Storage Device In Insulated Solar Electric Cookers: Thermal Modeling And Experiment, Michael Antonio Fernandez Jun 2022

Solid Thermal Storage As An Energy Storage Device In Insulated Solar Electric Cookers: Thermal Modeling And Experiment, Michael Antonio Fernandez

Physics

The use of solid thermal storage (STS) as an energy storage device in insulated solar electric cookers (ISEC) was explored using a thermal simulation before retrofitting an existing cooker without energy storage and testing it under several conditions. STS sizing, material selection, and geometry were examined from both theoretical and practical perspectives and re-examined following experimental results. Characterization of the system’s thermal interfaces and methods to improve their thermal conductivities were investigated resulting in several performance enhancements to the system.


Sunsation’S Solar Powered Picnic Table, Michelle M. Barnett, Christopher Barber, Casey Durham, David Mason Jun 2022

Sunsation’S Solar Powered Picnic Table, Michelle M. Barnett, Christopher Barber, Casey Durham, David Mason

Mechanical Engineering

Team SunSation is an interdisciplinary senior design project group that was tasked with developing a semi-permanent seating area for Cal Poly's electrical engineering courtyard. The EE courtyard is populated with plastic folding tables and chairs that are slowly falling apart. Dale Dolan, the head of the EE department, requested that a table design be developed that incorporates the use of solar panels. The addition of the solar panels to the table would help promote clean renewable energy as well as provide shade to those sitting in the courtyard.

The solution that SunSation arrived at is broken up into mechanical/structural, electrical, …


Baker/Koob Final Report: Solar Solution For Mini Mars Rover, Jonathan Cederquist, Cole Korchek, Derick Louie, Michaella Ochotorena, Collin Petersen Jun 2022

Baker/Koob Final Report: Solar Solution For Mini Mars Rover, Jonathan Cederquist, Cole Korchek, Derick Louie, Michaella Ochotorena, Collin Petersen

Mechanical Engineering

This project focused on designing, building, and testing a functional prototype of a collapsible solar array on the mini Mars rover being developed by client and sponsor, Mr. Rich Murray. Although many previous collapsible solar arrays have been deployed for space missions, the previous solar-powered Mars rovers only deployed their arrays once upon landing. This solar array will be able to collapse and deploy multiple times to allow for greater rover mobility and stability when the rover is not charging. This system is critical to the success of the rover project because it provides power without which the rover cannot …


Enhancing Bifacial Pv Efficiency With The Addition Of A Rear Side Reflector, Neila Watson Jun 2022

Enhancing Bifacial Pv Efficiency With The Addition Of A Rear Side Reflector, Neila Watson

Honors Theses

Bifacial photovoltaics are an expanding sector of solar electricity production, collecting solar energy on the front, back, and sides of the module. This increases the efficiency by around 10% to 30% over a typical mono facial cell, which only collects sunlight on the front. However, the performance of bifacial PV arrays depends on a variety of factors, including temperature, shadows, solar insolation, and set-up geometry. The geometry is affected by the tilt angle, the azimuth angle, the height from the ground to the panel, and the reflectance from the ground surface. The addition of a reflector, usually white in color …