Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electronic Devices and Semiconductor Manufacturing

2011

Institution
Keyword
Publication
Publication Type
File Type

Articles 31 - 60 of 66

Full-Text Articles in Engineering

Experimental And Numerical Investigation Of Nanoparticle Removal Using Acoustic Streaming And The Effect Of Time, Kaveh Bakhtari, Rasim O. Guldiken, Prashanth Makaram, Ahmed A. Busnaina, Jin-Goo Park Jun 2011

Experimental And Numerical Investigation Of Nanoparticle Removal Using Acoustic Streaming And The Effect Of Time, Kaveh Bakhtari, Rasim O. Guldiken, Prashanth Makaram, Ahmed A. Busnaina, Jin-Goo Park

Ahmed A. Busnaina

Theremoval of nanoparticles is becoming increasingly challenging as the minimumlinewidth continues to decrease in semiconductor manufacturing. In this paper,the removal of nanoparticles from flat substrates using acoustic streamingis investigated. Bare silicon wafers and masks with a 4 nmsilicon cap layer are cleaned. The silicon-cap films are usedin extreme ultraviolet masks to protect Mo–Si reflective multilayers. Theremoval of 63 nm polystyrene latex (PSL) particles from these substratesis conducted using single-wafer megasonic cleaning. The results show higherthan 99% removal of PSL nanoparticles. The results also showthat dilute SC1 provides faster removal of particles, which isalso verified by the analytical analysis. Particle removal …


Project 308: Augmented Reality Mario Kart, Joseph Abad, David Allender, Joryl Calizo, Ryan Gaspar, Gavin Lee Jun 2011

Project 308: Augmented Reality Mario Kart, Joseph Abad, David Allender, Joryl Calizo, Ryan Gaspar, Gavin Lee

Computer Engineering

Mario Kart is a popular go-kart racing game developed by Nintendo. The premise of the game is simple: drive a go-kart along a racetrack and reach the finish line before the other players. What makes this game unique, however, is the inclusion of weapons, traps, and other projectiles that a player can use to gain an advantage in the race. We have taken on the challenge of not only recreating this amazing game, but using the art of Augmented Reality to fully immerse the player in the full experience. Rather than play the game on a television screen with a …


Final Design Review: Design Of An Integrated Solar Cell Array To Power A Solar Ear Hearing Aid Battery Recharger, Christina (Chrissa) Blattner, Scott Carey, Jared Myren, Faye Siao Jun 2011

Final Design Review: Design Of An Integrated Solar Cell Array To Power A Solar Ear Hearing Aid Battery Recharger, Christina (Chrissa) Blattner, Scott Carey, Jared Myren, Faye Siao

Materials Engineering

As the energy of fossil fuel supplies are fast depleting due to high consumptions of energy by human beings, the need for other sources of energy, such as solar energy, has become a viable option. By creating solar cell arrays the desired voltage can be generated. The overall goal of the Solar Ear project is to create an array of photovoltaic cells connected with aluminum tracings to recharge batteries that are specifically used for hearing aids. The goal embodies two main areas: the design of a processing method to connect the cells during a micro-fabrication process and the creation of …


Laser Cursor, Michael Liman Jun 2011

Laser Cursor, Michael Liman

Electrical Engineering

A user controls a cursor on a computer screen using a laser pointer. A camera picks up the laser pointer’s position and sends the data to the computer to move the cursor in the correct position.


Low-Power Self-Sustaining Schedule Display, Samuel (Sam) August Jun 2011

Low-Power Self-Sustaining Schedule Display, Samuel (Sam) August

Electrical Engineering

The completed project is an Amazon Kindle, powered by a USB solar charger, running a student designed program to display a weekly schedule for a faculty member. The purpose of the project was to design a sustainable electronic schedule display for use outside a faculty office. It was designed in the hopes that faculty members could more easily update their schedules, and possibly allow for students to schedule appointments. The program was designed using Java and the solar-charger was designed using a solar cell, Schottky diode, and a USB to micro-B USB cable.


Programmable Household Led Light Fixture, Jordan Locano Jun 2011

Programmable Household Led Light Fixture, Jordan Locano

Electrical Engineering

This report details the development and construction of a LED light fixture to be used for household lighting. This document details background information, design ideas, project specifications, production, assembly, testing, and conclusions involved with this project. The goals of this project is to design and build a cost-effective replacement for traditional room lighting that can perform better and last longer than traditional methods.


Experimental Study Of Shoot-Through Control Methods For Z-Source Inverter, Omar Ellabban, Joeri Van Mierlo, Philippe Lataire May 2011

Experimental Study Of Shoot-Through Control Methods For Z-Source Inverter, Omar Ellabban, Joeri Van Mierlo, Philippe Lataire

Omar Ellabban

This paper presents a simulation and experimental comparative analysis of the Z-source inverter (ZSI) with four different shoot-through (ST) control methods, namely: the simple boost control, the maximum boost control, the maximum constant boost control and the modified space vector modulation boost control methods. A review of these methods is presented with a summary of all expressions. A prototype of a 30 kW ZSI is designed and implemented. The eZdsp™ F2808 evaluation board is used for the realization of the shoot-through control methods and the real time workshop (RTW) is used for automatic code generation. The paper compares between the …


Experimental And Theoretical Study Of Polarization-Dependent Optical Transitions In Inas Quantum Dots At Telecommunication-Wavelengths (1300-1500 Nm), Muhammad Usman, Susannah Heck, Edmund Clarke, Peter Spencer, Hoon Ryu, Ray Murray, Gerhard Klimeck May 2011

Experimental And Theoretical Study Of Polarization-Dependent Optical Transitions In Inas Quantum Dots At Telecommunication-Wavelengths (1300-1500 Nm), Muhammad Usman, Susannah Heck, Edmund Clarke, Peter Spencer, Hoon Ryu, Ray Murray, Gerhard Klimeck

Birck and NCN Publications

observed, in contrast to recent reports for single QDJOURNAL OF APPLIED PHYSICS 109, 104510 (2011)
The design of some optical devices, such as semiconductor optical amplifiers for telecommunication applications, requires polarization-insensitive optical emission at long wavelengths (1300–1550 nm). Self-assembled InAs/GaAs quantum dots (QDs) typically exhibit ground state optical emissions at wavelengths shorter than 1300 nm with highly polarization-sensitive characteristics, although this can be modified by the use of low growth rates, the incorporation of strain-reducing capping layers, or the growth of closely-stacked QD layers. Exploiting the strain interactions between closely stacked QD layers also affords greater freedom in the choice …


Design Guide For Cmos Process On-Chip 3d Inductor Using Thru-Wafer Vias, Gary Vanackern May 2011

Design Guide For Cmos Process On-Chip 3d Inductor Using Thru-Wafer Vias, Gary Vanackern

Boise State University Theses and Dissertations

Three-dimensional (3D) inductors using high aspect ratio (10:1) thru-wafer via (TWV) technology in a complementary metal oxide semiconductor (CMOS) process have been designed, fabricated, and measured. The inductors were designed using 500 μm tall vias with the number of turns ranging from 1 to 20 in both a wide and narrow trace width to space ratios. Radio frequency characterization was studied with emphasis upon de-embedding techniques and resulting effects. The open, short, thru de-embedding (OSTD) technique was used to measure all devices. The highest quality factor (Q) measured was 11.25 at 798MHz for a 1-turn device with a self-resonant frequency …


Showcase For The Advantages Of Asynchronous Vs. Synchronous Circuits, Justin Roark May 2011

Showcase For The Advantages Of Asynchronous Vs. Synchronous Circuits, Justin Roark

Electrical Engineering Undergraduate Honors Theses

Synchronous circuits dominate the semiconductor industry, but asynchronous circuitry is becoming more popular and will continue to do so, as evidenced by the International Technology Roadmap for Semiconductors. Asynchronous circuits, when compared to synchronous circuits, display tolerance to supply voltage and temperature variation. The goal of this project is to demonstrate these two advantages. The project will compare two microcontrollers, a synchronous 8051 and an asynchronous 8031, which will both play a song under various stresses. Note that an 8031 and 8051 are the same, except for the 8051 includes an on-chip instruction memory, whereas the 8031's is off-chip. When …


Design Of A High-Voltage, Differential Drive Bradbury-Nielsen Gate Amplifier With Ultra-High Slew Rate And Input Isolation, Kevin Christopher Omoumi May 2011

Design Of A High-Voltage, Differential Drive Bradbury-Nielsen Gate Amplifier With Ultra-High Slew Rate And Input Isolation, Kevin Christopher Omoumi

Masters Theses

To isolate and study various components of a nuclear reaction, elaborate equipment must be developed to aid in this process. This thesis presents the design and implementation of an ultra-high slew rate Bradbury-Nielsen gate driver circuit with high-voltage input isolation. This design will be used in a multi-pass time-of-flight isomer spectrometer and separator application integrated into an overall instrument called the Oak Ridge Isomer Spectrometer and Separator (ORISS). The output drive signals of this circuit are transmitted through a vacuum feed-through system to supply the necessary signals to the Bradbury-Nielsen gate contained within the vacuum. A differential driving signal with …


Self-Assembling Organic Semiconductors With Tunable Electronic Properties Based On Novel Asymmetric Phenazine And Bisphenazine, Kyoungmi Jang May 2011

Self-Assembling Organic Semiconductors With Tunable Electronic Properties Based On Novel Asymmetric Phenazine And Bisphenazine, Kyoungmi Jang

UNLV Theses, Dissertations, Professional Papers, and Capstones

Current demands in the area of organic semiconductors focus on both electronic and self-assembling properties. Particularly, one-dimensionally grown nanostructures of small organic semiconductors have drawn much attention for nanodevice fabrication. Self-assembly through various intermolecular interactions has been widely used to produce one-dimensionally grown nanostructures which can be induced by various methods such as rapid solution dispersion, a phase transfer method, vapor annealing, crystallization, and organogelation in conjunction with proper molecular design. Controlling the morphology of the nanostructures plays an important role in achieving desirable properties in optoelectronic device applications. While significant advancements have been made in developing molecular architectures for …


Multifrequency Wilkinson Power Divider Using Microstrip Nonuniform Transmission Lines, M. Khalaj-Amirhossein, M. Moghavvemi, Hossein Ameri Mahabadi Apr 2011

Multifrequency Wilkinson Power Divider Using Microstrip Nonuniform Transmission Lines, M. Khalaj-Amirhossein, M. Moghavvemi, Hossein Ameri Mahabadi

Hossein Ameri Mahabadi

A new idea is proposed to modify the conventional Wilkinson power dividers to operate at two or several desired frequencies. The proposed structure contains two Microstrip Nonuniform Transmission Lines (MNTLs) instead of two uniform ones with nearly the same length at the minimum frequency. The strip width of MNTLs is considered variable and is written as a truncated Fourier series. Three nonuniform power dividers are designed and one of them operating at frequencies 1.0, 2.8, and 4.5 GHz is fabricated and measured. The measured results of the fabricated diplexer have a good agreement with the theoretical results.


Body-Biased Vco Tunes 12 To 16 Ghz, M. Moghavvemi, Hossein Ameri Mahabadi, A. Attaran Apr 2011

Body-Biased Vco Tunes 12 To 16 Ghz, M. Moghavvemi, Hossein Ameri Mahabadi, A. Attaran

Hossein Ameri Mahabadi

This body-biased voltage-controlled oscillator provides reasonably good phase-noise performance over a broad tuning range with relatively low power consumption and low jitter timing noise in the time domain.


Shaped Mems Contact, Ronald A. Coutu Jr., Paul E. Kladitis, Robert L. Crane Mar 2011

Shaped Mems Contact, Ronald A. Coutu Jr., Paul E. Kladitis, Robert L. Crane

AFIT Patents

A MEMS switch fabrication process and apparatus inclusive of a bulbous rounded surface movable contact assembly that is integral with the switch movable element and achieving of long contact wear life with low contact electrical resistance. The disclosed process is compatible with semiconductor integrated circuit fabrication materials and procedures and includes an unusual photoresist reflow step in which the bulbous contact shape is quickly defined in three dimensions from more easily achieved integrated circuit mask and etching-defined precursor shapes. A plurality of differing photoresist materials are used in the process. A large part of the contact and contact spring formation …


Electromagnetic Modeling And Measurement Of Adaptive Metamaterial Structural Elements, Matthew E. Jussaume Mar 2011

Electromagnetic Modeling And Measurement Of Adaptive Metamaterial Structural Elements, Matthew E. Jussaume

Theses and Dissertations

This document addresses two major obstacles facing metamaterial development: uncertainty in the characterization of electromagnetic field behavior in metamaterial structures and the relatively small operational bandwidth of metamaterial structures. To address the first obstacle, a method of prediction aided measurement is developed and exploited to examine the field interactions within metamaterial devices. The fusion of simulation and measurement techniques enhances the understanding of the physical interactions of fields in the presence of metamaterials. To address the second obstacle, this document characterizes the effectiveness of an adaptive metamaterial design that incorporates a microelectromechanical systems (MEMS) variable capacitor. Applying voltages to the …


Optical Metamaterial Design, Fabrication And Test, Jack P. Lombardi Mar 2011

Optical Metamaterial Design, Fabrication And Test, Jack P. Lombardi

Theses and Dissertations

Metamaterials, materials that make use of naturally occurring materials and designed structures to create materials with special properties not found in nature, are a fascinating new area of research, combining the fields of physics, microfabrication, and material science. This work will focus on the development of metamaterials operating in the visible and infrared which will be constructed and tested for basic optical properties. Possible applications for these materials will not be investigated. The this work will go into the fabrication and test of layered metal-dielectric structures, called layered metamaterials, as these structures hold potential for applications in advanced optical systems. …


Control Of A Bidirectional Z-Source Inverter Forelectric Vehicle Applications In Different Operation Modes, Omar Ellabban, Joeri Van Mierlo, Philippe Lataire Mar 2011

Control Of A Bidirectional Z-Source Inverter Forelectric Vehicle Applications In Different Operation Modes, Omar Ellabban, Joeri Van Mierlo, Philippe Lataire

Omar Ellabban

This paper proposes two control strategies for the bidirectional Z-source inverters (BZSI) supplied by batteries for electric vehicle applications. The first control strategy utilizes the indirect field-oriented control (IFOC) method to control the induction motor speed. The proposed speed control strategy is able to control the motor speed from zero to the rated speed with the rated load torque in both motoring and regenerative braking modes. The IFOC is based on PWM voltage modulation with voltage decoupling compensation to insert the shoot-through state into the switching signals using the simple boost shoot-through control method. The parameters of the four PI …


Led Spotlight, Eric Toussaint Mar 2011

Led Spotlight, Eric Toussaint

Electrical Engineering

This report details the development and construction of an LED spotlight useable in a theatrical or architectural setting. In depth background information, initial design concepts, lighting instrument specifications, assembly, testing, and conclusions from results are highlighted in this document. Project goals include efforts to support more energy efficient lighting in the arts and general lighting applications and a decrease in overall costs for energy used in all dramatic and architectural lighting applications.


A Dsp Based Dual Loop Digital Controller Design And Implementation Of A High Power Boost Converter For Hybrid Electric Vehicles Applications, Omar Ellabban, Joeri Van Mierlo, Philippe Lataire Feb 2011

A Dsp Based Dual Loop Digital Controller Design And Implementation Of A High Power Boost Converter For Hybrid Electric Vehicles Applications, Omar Ellabban, Joeri Van Mierlo, Philippe Lataire

Omar Ellabban

This paper presents a DSP based direct digital control design and implementation for a high power boost converter. A single loop and dual loop voltage control are digitally implemented and compared. The real time workshop (RTW) is used for automatic real-time code generation. Experimental results of a 20 kW boost converter based on the TMS320F2808 DSP during reference voltage changes, input voltage changes, and load disturbances are presented. The results show that the dual loop control achieves better steady state and transient performance than the single loop control. In addition, the experimental results validate the effectiveness of using the RTW …


Tuning Lattice Thermal Conductance By Porosity Control In Ultrascaled Si And Ge Nanowires, Abhijeet Paul, Gerhard Klimeck Feb 2011

Tuning Lattice Thermal Conductance By Porosity Control In Ultrascaled Si And Ge Nanowires, Abhijeet Paul, Gerhard Klimeck

Birck and NCN Publications

Porous nanowires 􏰎NWs􏰍 with tunable thermal conductance are examined as a candidate for thermoelectric devices with high efficiency. Thermal conductance 􏰎􏱆l􏰍 of porous NWs is calculated using the phonon dispersion obtained from a modified valence force field model. Porosity in the NWs break the crystal symmetry leading to the reduction in ballistic 􏱆l. 􏰐100􏰑 Si and Ge NWs show similar percentage reductions in 􏱆l for the same amount of porosity. The model predicts an anisotropic reduction in 􏱆l in SiNWs, with 􏰐111􏰑 showing the maximum reduction followed by 􏰐100􏰑 and 􏰐110􏰑 for a similar hole radius. The reduction in 􏱆l …


Microstrip Diplexers With Double-Stub Bandpass Filters, M. Khalaj-Amirhosseini, M. Moghavvemi, Hossein Ameri Mahabadi, A. Attaran Feb 2011

Microstrip Diplexers With Double-Stub Bandpass Filters, M. Khalaj-Amirhosseini, M. Moghavvemi, Hossein Ameri Mahabadi, A. Attaran

Hossein Ameri Mahabadi

This paper presents a microstrip diplexer using two Double-Stub Band-Pass Filters (DS-BPFs), composed of several double-stubs connected to a main microstrip line. Each DS-BPF has a null at the center frequency of the other. Therefore, these types of filters are suitable for diplexers with two near frequencies. A diplexer at frequencies 5.875 and 6.225 GHz is designed, fabricated and measured. Measured results of the fabricated diplexer have a good agreement with the calculated results.


Design And Implementation Of A Dsp Based Dual-Loop Capacitor Voltage Control Of The Z-Source Inverter, Omar Ellabban, Joeri Van Mierlo, Philippe Lataire Feb 2011

Design And Implementation Of A Dsp Based Dual-Loop Capacitor Voltage Control Of The Z-Source Inverter, Omar Ellabban, Joeri Van Mierlo, Philippe Lataire

Omar Ellabban

The Z-source inverter is a recently proposed single stage converter topology with buck-boost capabilities. This paper proposes a dual-loop capacitor voltage control, with outer voltage loop and inner current loop, of the Z-source inverter (ZSI). Both controller are designed based on a third order small signal model of the ZSI using the direct digital design method. Real-time control algorithm is implemented using DSP linked with MATLAB real time workshop (RTW) as rapid prototyping tool. The feasibility of the proposed dual loop control method has been verified by the simulation and experimental results.


Setting New Noise Performance Benchmarks Using Wideband Low-Noise High-Linearity Lnas, Chin-Leong Lim Jan 2011

Setting New Noise Performance Benchmarks Using Wideband Low-Noise High-Linearity Lnas, Chin-Leong Lim

Chin-Leong Lim

Objective: to design a 900 MHz Low-Noise Amplifier (LNA) using a MMIC fabricated on a new ultra low noise GaAs ePHEMT process. To demonstrate a new noise performance bench mark (F = 0.3 dB at IRL ≤ - 15 dB) for the plastic-packaged device class.

Material: The LNA consists of a Microwave Monolithic Integrated Circuit (MMIC) and 9 passive components mounted on a 21.5x18 mm2 Rogers RO4350 micro-strip PCB. The MMIC, which comprises a common-source amplifier and temperature-tracking active bias, is fabricated on a new GaAs ePHEMT process optimized for noise. As loss in the input matching network is proportional …


Gpu Based Lithography Simulation And Opc, Lokesh Subramany Jan 2011

Gpu Based Lithography Simulation And Opc, Lokesh Subramany

Masters Theses 1911 - February 2014

Optical Proximity Correction (OPC) is a part of a family of techniques called Resolution Enhancement Techniques (RET). These techniques are employed to increase the resolution of a lithography system and improve the quality of the printed pattern. The fidelity of the pattern is degraded due to the disparity between the wavelength of light used in optical lithography, and the required size of printed features. In order to improve the aerial image, the mask is modified. This process is called OPC, OPC is an iterative process where a mask shape is modified to decrease the disparity between the required and printed …


On Process Variation Tolerant Low Cost Thermal Sensor Design, Spandana Remarsu Jan 2011

On Process Variation Tolerant Low Cost Thermal Sensor Design, Spandana Remarsu

Masters Theses 1911 - February 2014

Thermal management has emerged as an important design issue in a range of designs from portable devices to server systems. Internal thermal sensors are an integral part of such a management system. Process variations in CMOS circuits cause accuracy problems for thermal sensors which can be fixed by calibration tables. Stand-alone thermal sensors are calibrated to fix such problems. However, calibration requires going through temperature steps in a tester, increasing test application time and cost. Consequently, calibrating thermal sensors in typical digital designs including mainstream desktop and notebook processors increases the cost of the processor. This creates a need for …


Electromagnetic Modeling Of Photolithography Aerial Image Formation Using The Octree Finite Element Method, Seth A. Jackson Jan 2011

Electromagnetic Modeling Of Photolithography Aerial Image Formation Using The Octree Finite Element Method, Seth A. Jackson

Masters Theses 1911 - February 2014

Modern semiconductor manufacturing requires photolithographic printing of subillumination wavelength features in photoresist via electromagnetic energy scattered by complicated photomask designs. This results in aerial images which are subject to constructive and destructive wave interference, as well as electromagnetic resonances in the photomask features. This thesis proposes a 3-D full-wave frequency domain nonconformal Octree mesh based Finite Element Method (OFEM) electromagnetic scattering solver in combination with Fourier Optics to accurately simulate the entire projection photolithography system, from illumination source to final image intensity in the photoresist layer. A rapid 1-irregular octree based geometry model mesher is developed and shown to perform …


Charge Storage Characteristics Of Ultra-Small Pt Nanoparticle Embedded Gaas Based Non-Volatile Memory, Reginald Jeff, M Yun, B Ramalingam, B Lee, V Misra, Gregory Edward Triplett, Shubhra Gangopadhyay Jan 2011

Charge Storage Characteristics Of Ultra-Small Pt Nanoparticle Embedded Gaas Based Non-Volatile Memory, Reginald Jeff, M Yun, B Ramalingam, B Lee, V Misra, Gregory Edward Triplett, Shubhra Gangopadhyay

Electrical and Computer Engineering Publications

Charge storage characteristics of ultra-small Pt nanoparticle embedded devices were characterized by capacitance-voltage measurements. A unique tilt target sputtering configuration was employed to produce highly homogenous nanoparticle arrays. Pt nanoparticle devices with sizes ranging from ∼0.7 to 1.34 nm and particle densities of ∼3.3–5.9 × 1012 cm−2 were embedded between atomic layer deposited and e-beam evaporated tunneling and blocking Al2O3 layers. These GaAs-based non-volatile memory devices demonstrate maximum memory windows equivalent to 6.5 V. Retention characteristics show that over 80% charged electrons were retained after 105 s, which is promising for device applications.


Reduced Auger Recombination In Mid-Infrared Semiconductor Lasers, Robert Bedford, Gregory Edward Triplett, David H. Tomich, Stephan W. Koch, Jerome Moloney, Jorg Hader Jan 2011

Reduced Auger Recombination In Mid-Infrared Semiconductor Lasers, Robert Bedford, Gregory Edward Triplett, David H. Tomich, Stephan W. Koch, Jerome Moloney, Jorg Hader

Electrical and Computer Engineering Publications

A quantum-design approach to reduce the Auger losses in two micron InGaSb type-I quantum well edge-emitting lasers is reported. Experimentally realized structures show a 3X reduction in the threshold, which results in 4.6 lower Auger current loss at room temperature. This is equivalent to a carrier lifetime improvement of 5.7 and represents about a 19-fold reduction in the equivalent “Auger coefficient.”


A Compact Physical Model For Morphology Induced Intrinsic Degradation Of Polymer Based Bulk Heterojunction Solar Cell, Biswajit Ray, Muhammad A. Alam Jan 2011

A Compact Physical Model For Morphology Induced Intrinsic Degradation Of Polymer Based Bulk Heterojunction Solar Cell, Biswajit Ray, Muhammad A. Alam

Birck and NCN Publications

The gradual loss of efficiency during field operation poses a fundamental challenge for economic viability of any solar cell technology. Well known examples include light-induced degradation in Si-based cell (Staebler-Wronski effect), Cu diffusion in thin film (CIGS) cell, hot-spot degradation in series connected modules, etc. Here we develop a compact model for an intrinsic degradation concern for bulk heterojunction type organic photovoltaic (BH-OPV) cells that involve continued (thermal) phase segregation of the donor-acceptor molecules leading to characteristic loss of efficiency and performance. Our approach interprets a number of BH-OPV device degradation measurements within a common framework and suggests/rationalizes intuitive routes …