Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 140

Full-Text Articles in Entire DC Network

Direct Blue 86 Textile Dye Removal From Aqueous Solution Using Rice Husk-Based Adsorbent, M. Zulbahari M. Zua, Muhammad Raza Ul Mustafa, Mohamed Hasnain Isa, Teh Sabariah Binti Abd Manan, Naimah Ibrahim, Rozeana Hj Md Juani, Wida Susanty Hj Suhaili, Asmaal Muizz Sallehhin Bin Hj Mohammad Sultan, Zuliana Binti Hj Nayan Jan 2024

Direct Blue 86 Textile Dye Removal From Aqueous Solution Using Rice Husk-Based Adsorbent, M. Zulbahari M. Zua, Muhammad Raza Ul Mustafa, Mohamed Hasnain Isa, Teh Sabariah Binti Abd Manan, Naimah Ibrahim, Rozeana Hj Md Juani, Wida Susanty Hj Suhaili, Asmaal Muizz Sallehhin Bin Hj Mohammad Sultan, Zuliana Binti Hj Nayan

ASEAN Journal on Science and Technology for Development

Adsorption by activated carbon is an effective method of dye removal. However, due to high production and regeneration costs of activated carbon, various studies on low-cost adsorbents have been conducted. Agricultural waste such as rice husk (RH) is seen to be a good adsorbent for dye removal. Moreover, rice husk is readily available. In this study, rice husk-based adsorbents were prepared by chemical and thermal treatments. Standard curve (colour vs absorbance) for Direct Blue 86 (DB 86) was prepared to determine the concentration of dye before and after adsorption. The adsorption potential of the adsorbent for textile dye DB 86 …


Thermal Decomposition And Kinetic Parameters Of Three Biomass Feedstocks For The Performance Of The Gasification Process Using A Thermogravimetric Analyzer, Rania Almusafir, Joseph D. Smith Jan 2024

Thermal Decomposition And Kinetic Parameters Of Three Biomass Feedstocks For The Performance Of The Gasification Process Using A Thermogravimetric Analyzer, Rania Almusafir, Joseph D. Smith

Chemical and Biochemical Engineering Faculty Research & Creative Works

Thermogravimetric analysis (TGA) is a powerful technique and useful method for characterizing biomass as a non-conventional fuel. A TGA apparatus has been utilized to experimentally investigate the impact of biomass feedstock diversity on the performance of the gasification of hardwood (HW), softwood (SW) pellets, and refuse-derived fuel (RDF) materials. The solid conversion rate and the volatile species formation rate have been estimated to quantify the rates of devolatilization for each material. In addition, the combustion kinetic characteristics of the three biomass feedstocks were investigated using TGA at different heating rates, and a thermal kinetic analysis was conducted to describe the …


Xylan Fast Pyrolysis: An Experimental And Modelling Study Of Particle Changes And Volatiles Release, F Cerciello, E Freisewinkel, A Coppola, C Ontyd, D Tarlinski, Martin Schiemann, Osvalda Senneca, Pierro Salatino, C Allouis, Victor Scherer, Thomas H. Fletcher Jan 2024

Xylan Fast Pyrolysis: An Experimental And Modelling Study Of Particle Changes And Volatiles Release, F Cerciello, E Freisewinkel, A Coppola, C Ontyd, D Tarlinski, Martin Schiemann, Osvalda Senneca, Pierro Salatino, C Allouis, Victor Scherer, Thomas H. Fletcher

Faculty Publications

Biomass char particles produced by pyrolysis may have different morphologies, which has important implications on burning mode, conversion rate and boiler efficiency. These features are difficult to address due to the complexity of biomass structure and pyrolysis reaction models. The present work reports preliminary results on the morphological changes and volatile release that solid particles of Xylan experience upon fast heating in a Drop Tube Reactor (DTR) and in a Heated Strip Reactor (HSR) in a range of temperature between 1100 and 1573 K under inert atmosphere with heating rate in the order of 103 K/s. Two different Xylan …


Carbon Dioxide Gasification Of Biochar: A Study On Utilizing Captured Co2 To Mitigate Greenhouse Gas Emission And Improving Carbon Conversion Efficiency, Nnamdi Ofuani Jan 2024

Carbon Dioxide Gasification Of Biochar: A Study On Utilizing Captured Co2 To Mitigate Greenhouse Gas Emission And Improving Carbon Conversion Efficiency, Nnamdi Ofuani

Electronic Theses and Dissertations

With rapidly growing global economies and world population, fossil fuel continues to play a major role in meeting current energy demands. Carbon capture and storage (CCS) technologies have, hence, been implemented to reduce CO2 emissions in the atmosphere. With the implementation of CCS technologies comes the need to utilize the captured CO2. This research, therefore, proposes CO2 gasification of biochar as a viable carbon utilization pathway. With captured CO2 coming at various concentrations, there is a need to understand how CO2 concentration affects biochar conversion to useful products. This study, therefore, evaluates the effects …


Characterization And Evaluation Of Various Biochar Types As Green Adsorbents For Rare Earth Element Recovery From Aqueous Solutions, Oluwaseun Victor Famobuwa Jan 2024

Characterization And Evaluation Of Various Biochar Types As Green Adsorbents For Rare Earth Element Recovery From Aqueous Solutions, Oluwaseun Victor Famobuwa

Graduate Theses, Dissertations, and Problem Reports

Rare earth elements (REEs) are members of the lanthanide family (atomic number 57 – 71). They are significantly important to the global economy due to their applications in renewable energy, defense, and medical industries. REEs are primarily derived from bastnaesite and monazite but may also be present in xenotime, cerite, alanite, and many other types of mineralization in lesser amounts. Due to the increasing demand for REEs and their criticality in the supply chain, the need to explore secondary sources of REEs has gained tremendous importance.

Secondary sources of REEs include but are not limited to acid mine drainage (AMD), …


Impact Of Methylene Blue On Enhancing The Hydrocarbon Potential Of Early Cambrian Khewra Sandstone Formation From The Potwar Basin, Pakistan, Muhammad Ali, Abdul M. Shar, Nurudeen Yekeen, Hussein Abid, Muhammad S. Kamal, Hussein Hoteit Dec 2023

Impact Of Methylene Blue On Enhancing The Hydrocarbon Potential Of Early Cambrian Khewra Sandstone Formation From The Potwar Basin, Pakistan, Muhammad Ali, Abdul M. Shar, Nurudeen Yekeen, Hussein Abid, Muhammad S. Kamal, Hussein Hoteit

Research outputs 2022 to 2026

Significant amounts of hydrocarbon resources are left behind after primary and secondary recovery processes, necessitating the application of enhanced oil recovery (EOR) techniques for improving the recovery of trapped oil from subsurface formations. In this respect, the wettability of the rock is crucial in assessing the recovery and sweep efficiency of trapped oil. The subsurface reservoirs are inherently contaminated with organic acids, which renders them hydrophobic. Recent research has revealed the significant impacts of nanofluids, surfactants, and methyl orange on altering the wettability of organic-acid-contaminated subsurface formations into the water-wet state. This suggests that the toxic dye methylene blue (MB), …


Computationally-Driven Insights Into The Ligand Environments Of Materials For Catalysis And Separations, Stephen Vicchio Dec 2023

Computationally-Driven Insights Into The Ligand Environments Of Materials For Catalysis And Separations, Stephen Vicchio

All Dissertations

Designing new catalytic and sorption materials is necessary to limit global temperature rise below 1.5 ◦C by 2050, while also meeting global energy demands. Climate change and energy production are not mutually exclusive; global population growth has direct impacts on global energy demands and climate. In both catalysis and adsorption applications, new technologies are needed to address these challenges. Catalysis can provide alternate, low-energy routes for converting low-value gases into higher-value chemical commodities, thus altering our current energy production. Likewise, new sorption materials can capture previously emitted CO2 from decades of energy production from fossil fuels, thus helping to …


Wastewater Treatment Using Encapsulated Chabazite In Polyvinyl Alcohol-Sodium Alginate Hydrogel Biofilm Carriers, Susieanna Nevada Persaud Oct 2023

Wastewater Treatment Using Encapsulated Chabazite In Polyvinyl Alcohol-Sodium Alginate Hydrogel Biofilm Carriers, Susieanna Nevada Persaud

USF Tampa Graduate Theses and Dissertations

Nitrogen discharge from wastewater is a global issue and with increased urbanization as well as industrialization, it has become even more essential to develop more efficient wastewater treatment systems. The dominant form of nitrogen in wastewater is ammonium. Biological oxidation of ammonium to nitrite and nitrate is the first step in biological nitrogen removal processes. If left untreated, nitrogen can cause toxicity to aquatic life, unsafe changes in water quality, and eutrophication.

Biofilm carriers can help to improve the efficiency of traditional activated sludge wastewater treatment systems by reducing operating costs and reducing hydraulic retention time. Biofilm carriers also promote …


Comparative Investigations On Microextraction And Conventional Air Sampling Techniques: Challenges And Future Directions, Firoz Ahmed, Mehedi Hasan Roni, Ashiqur Rahman, Sayed M A Salam Sep 2023

Comparative Investigations On Microextraction And Conventional Air Sampling Techniques: Challenges And Future Directions, Firoz Ahmed, Mehedi Hasan Roni, Ashiqur Rahman, Sayed M A Salam

Al-Bahir Journal for Engineering and Pure Sciences

Microextraction technique (e.g., solid phase microextraction, thin film microextraction, in-tube extraction) brings a revolutionary change in air sampling techniques over the recent few years. This advanced technique exhibits a high pollutant extraction rate, a low retention time, and a lower error margin compared to conventional air sampling techniques. The accuracy range of microextraction technique (MET) was recorded ~90-95% to isolate the volatile organic components, oxygenated and halogenated carbon particles from the air. However, the efficiency of MET increases additional >3-5% when employed by coupled with gas chromatography or gas chromatography-mass spectrometry. The conventional sampling techniques (e.g., bag sampling, grab sampling) …


Understanding Lignin’S Fast Pyrolysis Through Examination Of The Thermolysis Mechanisms Of Model Oligomers, Ross Wesley Houston Aug 2023

Understanding Lignin’S Fast Pyrolysis Through Examination Of The Thermolysis Mechanisms Of Model Oligomers, Ross Wesley Houston

Doctoral Dissertations

The lignocellulosic biorefinery is a visionary concept that endeavors to provide an alternative to fossil-based refineries by producing biobased fungible fuels and specialty chemicals almost exclusively derived currently from petroleum refineries. This vision of the lignocellulosic biorefinery can only be realized if all fractions of lignocellulosic biomass are efficiently deconstructed and valorized to generate a diverse portfolio of products to sustain it against market vicissitudes. Of the three main structural constituents of lignocellulosic biomass (i.e., cellulose, hemicellulose, and lignin), lignin is underutilized despite being the most abundant renewable source of aromatic platform chemicals, representing a growing 250 billion dollar market. …


Hydrothermal Liquefaction (Htl) Of Lignocellulosic Biomass For Biocrude Production: Reaction Kinetics And Corrosion-Resistance Performance Of Candidate Alloys For Reactors, Haoyu Wang May 2023

Hydrothermal Liquefaction (Htl) Of Lignocellulosic Biomass For Biocrude Production: Reaction Kinetics And Corrosion-Resistance Performance Of Candidate Alloys For Reactors, Haoyu Wang

Electronic Thesis and Dissertation Repository

In recent years, the rapid increase in the demand for clean energy and green chemicals as well as concerns over the supply and environmental impacts associated with fossil. resources have stimulated intensive research on conversion of bioresources, such as lignocellulosic biomass and biowaste, into energy, fuels, chemicals, and materials.

Hydrothermal liquefaction (HTL) is a unique thermochemical conversion process, particularly applicable for the conversion of wet biomass and biowaste feedstocks. Most of the biomass HTL studies are conducted in batch reactor and focus on the effects of catalysts, reaction temperature and time on production efficiency and chemical properties of the products. …


Solid Acid Catalyzed Dehydration Reactions Of Biomass-Derived Alcohols, Mackenzie Todd May 2023

Solid Acid Catalyzed Dehydration Reactions Of Biomass-Derived Alcohols, Mackenzie Todd

Electronic Theses and Dissertations

Concerns around climate change and the use of fossil resources contributing to increasing carbon dioxide concentrations in the atmosphere has motivated transitions to use biomass resources for the production of specialty chemicals and fuels, in hopes of creating a more cyclical use of carbon. The work presented here focuses on two different aspects of catalytic upgrading of biomass-derived platform molecules using heterogeneous acid catalysts. First, we use an interdisciplinary and iterative approach to process development for producing a diesel fuel additive from pyrolysis oils of woody biomass. We use fuel property calculations to define measures of success in chemical upgrading …


Value Added Products From Nonconventional Agricultural Biomass Waste Through Thermochemical Transformation, Nicolas A. Sarmiento Feb 2023

Value Added Products From Nonconventional Agricultural Biomass Waste Through Thermochemical Transformation, Nicolas A. Sarmiento

Electronic Thesis and Dissertation Repository

The alteration of temperature patterns around the world has become noticeable in the recent decade. Sea level rise, wildfires, and high temperatures have made people realize that climate change is affecting humans more tangibly than ever. Therefore, the United Nations have pushed to make policies to mitigate this problematic situation. This research investigated the production of biochar from agricultural waste through pyrolysis for fighting climate change and adding value to waste. Experiments in a laboratory scale reactor were conducted to obtain yields of pyrolytic products. Then, analysis of products provided data for characterization and the LCA of the tomato plant …


Coupling Nitrate Capture With Ammonia Production Through Bifunctional Redox-Electrodes, Kwiyong Kim, Alexandra Zagalskaya, Jing Lian Ng, Jaeyoung Hong, Vitaly Alexandrov, Tuan Anh Pham, Xiao Su Jan 2023

Coupling Nitrate Capture With Ammonia Production Through Bifunctional Redox-Electrodes, Kwiyong Kim, Alexandra Zagalskaya, Jing Lian Ng, Jaeyoung Hong, Vitaly Alexandrov, Tuan Anh Pham, Xiao Su

Department of Chemical and Biomolecular Engineering: Faculty Publications

Nitrate is a ubiquitous aqueous pollutant from agricultural and industrial activities. At the same time, conversion of nitrate to ammonia provides an attractive solution for the coupled environmental and energy challenge underlying the nitrogen cycle, by valorizing a pollutant to a carbon-free energy carrier and essential chemical feedstock. Mass transport limitations are a key obstacle to the efficient conversion of nitrate to ammonia from water streams, due to the dilute concentration of nitrate. Here, we develop bifunctional electrodes that couple a nitrate-selective redox-electrosorbent (polyaniline) with an electrocatalyst (cobalt oxide) for nitrate to ammonium conversion. We demonstrate the synergistic reactive separation …


Direct Air Capture: Catalyzing A Carbon Negative Future, Tagg K. Lee Jan 2023

Direct Air Capture: Catalyzing A Carbon Negative Future, Tagg K. Lee

Civil and Environmental Engineering Publications

Direct Air Capture (DAC) technology has emerged as a promising means to address the escalating challenges of atmospheric carbon dioxide (CO2) levels and mitigate climate change. This paper provides an elementary overview of DAC, encompassing its underlying principles, technological advancements, and associated challenges. Point Source Carbon Capture is compared against Direct Air Capture with a solid or liquid sorbent, and physisorbents/chemisorbents are outlined. The past decade has seen a steep rise in the usage of chemical sorbents in particular, which are explored alongside their regeneration processes. This review provides an introductory explanation for the mechanisms of common DAC …


Microscopic And Laboratory Scale Characterization Methods To Evaluate Biomass Deconstruction, Meenaa Chandrasekar Jan 2023

Microscopic And Laboratory Scale Characterization Methods To Evaluate Biomass Deconstruction, Meenaa Chandrasekar

Dissertations, Master's Theses and Master's Reports

Renewable fuels from lignocellulosic biomass are an appealing option because they can seamlessly integrate into the existing fuel distribution infrastructure. Lignocellulosic biomass constitutes nonedible plant material obtained from plant cell walls. The natural recalcitrance of lignocellulosic biomass poses a challenge in accessing the cell wall carbohydrates during biochemical conversion. Despite various approaches, enzymatic hydrolysis of lignocellulosic biomass remains economically impractical due to incomplete knowledge about biomass recalcitrance and the influence of environmental factors on biomass quality.

The first goal of this dissertation was to construct a microfluidic imaging reactor to better understand the tissue-specific deconstruction of plant materials. Confocal laser …


Production Of Cellulose-Based Superabsorbent Polymers For Soil Water Retention, Rosa Maria Arredondo Ramirez Nov 2022

Production Of Cellulose-Based Superabsorbent Polymers For Soil Water Retention, Rosa Maria Arredondo Ramirez

Electronic Thesis and Dissertation Repository

Superabsorbent polymers (SAPs) have attracted tremendous attention, with researchers noting that their high water absorption capacity (AC) is valuable for various applications, especially in agricultural contexts. Two types of materials can be used to produce SAPs: fossil-based (which are harmful to the environment) and bio-based (which are significantly more environmentally friendly, given their biodegradability and minimal toxic side effects). Although bio-based SAPs (Bio-SAPs) are preferable due to their environmental merits, their preparation tends to be time consuming and labour intensive, and their AC is still far below expectations. To address these problems, a novel, eco-friendly, cellulose-based superabsorbent polymer (Cellulo-SAP) was …


Sustainable Material For Urea Delivery Based On Chitosan Cross-Linked By Glutaraldehyde Saturated Toluene: Characterization And Determination Of The Release Rate Mathematical Model, Jayanudin Jayanudin, Retno S. D. Lestari, Indar Kustiningsih, Dandi Irawanto, Rozak Rozak, Reyonaldo L. A. Wardana, Fakhri Muhammad Nov 2022

Sustainable Material For Urea Delivery Based On Chitosan Cross-Linked By Glutaraldehyde Saturated Toluene: Characterization And Determination Of The Release Rate Mathematical Model, Jayanudin Jayanudin, Retno S. D. Lestari, Indar Kustiningsih, Dandi Irawanto, Rozak Rozak, Reyonaldo L. A. Wardana, Fakhri Muhammad

Karbala International Journal of Modern Science

The aims of this study were to characterize the urea-loaded chitosan microspheres and determine the release kinetic constants and diffusion coefficients. An emulsion cross-linking method was used to prepare the urea-loaded chitosan microspheres. Urea was dissolved in a solution of chitosan then put into vegetable oil and stirred to form an emulsion. Glutaraldehyde saturated toluene (GST) was added into the emulsion dropwise while continuously stirring for the solidification process. Chitosan microspheres filled with urea were washed, dried, and then analyzed. Characterization of the urea-loaded chitosan microspheres was conducted using a scanning electron microscope (SEM), Raman spectroscopy, X-ray diffraction, and particle …


A Review On N-Doped Biochar For Oxidative Degradation Of Organic Contaminants In Wastewater By Persulfate Activation, Yaxuan Gao, Wenran Gao, Haonan Zhu, Haoran Chen, Shanshan Yan, Ming Zhao, Hongqi Sun, Junjie Zhang, Shu Zhang Nov 2022

A Review On N-Doped Biochar For Oxidative Degradation Of Organic Contaminants In Wastewater By Persulfate Activation, Yaxuan Gao, Wenran Gao, Haonan Zhu, Haoran Chen, Shanshan Yan, Ming Zhao, Hongqi Sun, Junjie Zhang, Shu Zhang

Research outputs 2022 to 2026

The Persulfate-based advanced oxidation process is the most efficient and commonly used technology to remove organic contaminants in wastewater. Due to the large surface area, unique electronic properties, abundant N functional groups, cost-effectiveness, and environmental friendliness, N-doped biochars (NBCs) are widely used as catalysts for persulfate activation. This review focuses on the NBC for oxidative degradation of organics-contaminated wastewater. Firstly, the preparation and modification methods of NBCs were reviewed. Then the catalytic performance of NBCs and modified NBCs on the oxidation degradation of organic contaminants were discussed with an emphasis on the degradation mechanism. We further summarized the detection technologies …


Preparation Of N-, O-, And S-Tri-Doped Biochar Through One-Pot Pyrolysis Of Poplar And Urea Formaldehyde And Its Enhanced Removal Of Tetracycline From Wastewater, Wenran Gao, Zixiang Lin, Shanshan Yan, Yaxuan Gao, Hong Zhang, Xun Hu, Hongqi Sun, Shu Zhang Nov 2022

Preparation Of N-, O-, And S-Tri-Doped Biochar Through One-Pot Pyrolysis Of Poplar And Urea Formaldehyde And Its Enhanced Removal Of Tetracycline From Wastewater, Wenran Gao, Zixiang Lin, Shanshan Yan, Yaxuan Gao, Hong Zhang, Xun Hu, Hongqi Sun, Shu Zhang

Research outputs 2022 to 2026

In this study, biochar was prepared via hybrid doping of N, O, and S by applying one-pot pyrolysis of poplar wood and S-containing urea formaldehyde at 900 °C. Different doping ratios were adopted, and the contents of O, N, and S were in the ranges of 2.78 – 5.56 %, 2.16 – 4.92 %, and 1.42 – 4.98 %, respectively. This hybrid doping significantly enhanced the efficiency of the removal of tetracycline (40 mg/L) from wastewater to 71.84 % in comparison with that attained by using normal poplar biochar (29.45 %). The adsorption kinetics and isotherms indicated that the adsorption …


Biochar Preparation, Investigation Of Properties And Application As A Low-Cost Adsorbent – A Review, A Kh Aripov, S M. Turabdzhanov, Sh Komilova, O Sh Qodirov, G S. Rakhimova, T V. Darabkova, Zh Aimenova, L S. Rakhimova Oct 2022

Biochar Preparation, Investigation Of Properties And Application As A Low-Cost Adsorbent – A Review, A Kh Aripov, S M. Turabdzhanov, Sh Komilova, O Sh Qodirov, G S. Rakhimova, T V. Darabkova, Zh Aimenova, L S. Rakhimova

Technical science and innovation

An overview of current developments in biochar application in water and wastewater treatment is given in this article, along with a brief explanation of the sorption mechanisms for removing contaminants and the techniques for biochar preparation. In order to encourage the continued use of biochar in effective water and wastewater treatment, future research directions and environmental concerns about biochar are also presented.


Photocatalytic Degradation Of Organic Contaminants By Titania Particles Produced By Flame Spray Pyrolysis, Noah Babik May 2022

Photocatalytic Degradation Of Organic Contaminants By Titania Particles Produced By Flame Spray Pyrolysis, Noah Babik

Theses and Dissertations

Advanced oxidation of organic pollutants with TiO2 photocatalysts is limited due to the wide bandgap of TiO2, 3.2 eV, which requires ultraviolet (UV) radiation. When nanosized TiO2 is modified by carbon doping, charge recombination is inhibited and the bandgap is narrowed, allowing for efficient photodegradation under visible light. Here, we propose a flame spray pyrolysis (FSP) technique to create TiO2. The facile process of FSP has been successful in preparing highly crystalline TiO2 nanoparticles. Using the same procedure to deposit TiO2 onto biochar, the photocatalyst was doped by the carbonaceous material. The morphology, crystalline and electronic structure of the FSP …


Co-Gasification Of Biomass And Plastic Waste In A Bubbling Fluidized Bed Reactor, Islam Elghamrawy Apr 2022

Co-Gasification Of Biomass And Plastic Waste In A Bubbling Fluidized Bed Reactor, Islam Elghamrawy

Electronic Thesis and Dissertation Repository

Plastics are versatile, durable, and can be manipulated to match different needs. The COVID-19 pandemic has demonstrated the importance of reducing plastic waste and is believed to be responsible for increasing the generation of plastic waste by 54,000 tons/day which was reported in 2020. Another widely available waste is biomass waste. Agriculture and agroforestry, forest and wood processing, municipal waste, and the food industry are all considered major producers of biowaste. Co-gasification is considered one of the most promising methods of chemical recycling that targets the production of syngas (hydrogen and carbon monoxide) and light hydrocarbon gases. In this study, …


Date-Leaf Carbon Particles For Green Enhanced Oil Recovery, Bashirul Haq, Md Abdul Aziz, Dhafer Al Shehri, Nasiru Salahu Muhammed, Shaik Inayath Basha, Abbas Saeed Hakeem, Mohammed Ameen Ahmed Qasem, Mohammed Lardhi, Stefan Iglauer Apr 2022

Date-Leaf Carbon Particles For Green Enhanced Oil Recovery, Bashirul Haq, Md Abdul Aziz, Dhafer Al Shehri, Nasiru Salahu Muhammed, Shaik Inayath Basha, Abbas Saeed Hakeem, Mohammed Ameen Ahmed Qasem, Mohammed Lardhi, Stefan Iglauer

Research outputs 2022 to 2026

Green enhanced oil recovery (GEOR) is an environmentally friendly enhanced oil recovery (EOR) process involving the injection of green fluids to improve macroscopic and microscopic sweep efficiencies while boosting tertiary oil production. Carbon nanomaterials such as graphene, carbon nanotube (CNT), and carbon dots have gained interest for their superior ability to increase oil recovery. These particles have been successfully tested in EOR, although they are expensive and do not extend to GEOR. In addition, the application of carbon particles in the GEOR method is not well understood yet, requiring thorough documentation. The goals of this work are to develop carbon …


การแยกปรอทออกจากคอนเดนเสทด้วยเทคโนโลยีเมมเบรนเส้นใยกลวง, วรัญญา พูลแก้ว Jan 2022

การแยกปรอทออกจากคอนเดนเสทด้วยเทคโนโลยีเมมเบรนเส้นใยกลวง, วรัญญา พูลแก้ว

Chulalongkorn University Theses and Dissertations (Chula ETD)

งานวิจัยนี้มีวัตถุประสงค์ในการศึกษาวิธีการใหม่ในการแยกปรอทออกจากคอนเดนเสทโดยใช้ระบบเมมเบรนเส้นใยกลวงแบบคอนแทกเตอร์ ตามหลักการและพื้นฐานของการสกัดด้วยตัวทำละลาย โดยสารสกัดเสริมฤทธิ์ของกรดไฮโดรคลอริกและไทโอยูเรียเป็นสารสกัดที่ความเข้มข้น 0.5 โมลต่อลิตร และ 1.5 โมลต่อลิตร ตามลำดับ รูปแบบการไหลในลักษณะสารป้อนไหลผ่านและสารสกัดไหลวน อัตราการไหลที่ 1.67 ลูกบาศก์เซนติเมตรต่อวินาที ที่ อุณหภูมิ 323.15 เคลวิน ผลการศึกษาพบว่าประสบความสำเร็จในการแยกปรอทออกจากคอนเดนเสท ร้อยละการกำจัดปรอทสูงถึง 98.40 ซึ่งความเข้มข้นหลังกำจัดปรอทมีค่าต่ำกว่าค่าที่กำหนด สำหรับป้อนเข้าสู่อุตสาหกรรมปิโตรเคมีและโรงกลั่น คำนวณค่าการเปลี่ยนแปลงเอนทาลปีมาตรฐาน ค่าการเปลี่ยนแปลงเอนโทรปีมาตรฐาน และค่าการเปลี่ยนแปลงพลังงานเสรีของกิ๊บส์มาตรฐานได้ 119.80 กิโลจูลต่อโมล 0.37 กิโลจูลต่อโมล และ -1.15 กิโลจูลต่อโมลตามลำดับ บ่งชี้ว่าปฏิกิริยาการแยกปรอทออกจากคอนเดนเสทเป็น ปฏิกิริยาดูดความร้อน ผันกลับไม่ได้ และสามารถเกิดขึ้นเองที่ 323.15 เคลวิน ปรอทในรูปฟีนิลเมอร์คิวรีคลอไรด์พบมากที่สุดในคอนเดนเสทจากการวิเคราะห์ด้วยเทคนิคทางเสปกโตรสโคปี การประยุกต์ใช้แบบจำลองทางคณิตศาสตร์ อันได้แก่ แบบจำลองทางคณิตศาสตร์ลักษณะการแพร่ และลักษณะปฏิกิริยาเพื่ออธิบายลักษณะการถ่ายเทมวลในระบบเมมเบรนเส้นใยกลวงแบบคอนแทกเตอร์ ผลการคำนวณพบว่าแบบจำลองทางคณิตศาสตร์ลักษณะปฏิกิริยาสอดคล้องกับผลการทดลอง และค่าสัมประสิทธิ์การถ่ายโอนมวลในเมมเบรน และด้านเปลือก คือ 7.45 × 10−6 เซนติเมตรต่อวินาที และ 2.09 × 10−5 เซนติเมตรต่อวินาทีตามลำดับ ซึ่งบ่งชี้ว่าการถ่ายโอนมวลในเมมเบรนเป็นขั้นตอนควบคุม


Clean Process To Utilize The Potassium-Containing Phosphorous Rock With Simultaneous Hcl And Kcl Production Via The Steam-Mediated Reactions, Yunshan Wang, Lufang Shi, Houli Li, Yixiao Wang, Zhiying Wang, Xuebin An, Mingzhu Tang, Gang Yang, Jun He, Jing Hu, Yong Sun Jan 2022

Clean Process To Utilize The Potassium-Containing Phosphorous Rock With Simultaneous Hcl And Kcl Production Via The Steam-Mediated Reactions, Yunshan Wang, Lufang Shi, Houli Li, Yixiao Wang, Zhiying Wang, Xuebin An, Mingzhu Tang, Gang Yang, Jun He, Jing Hu, Yong Sun

Research outputs 2022 to 2026

In this paper, a clean process based on the steam-mediated reactions for simultaneous HCl and KCl production using the potassium (K)-containing phosphorous rock as a precursor is proposed. Through hydrochloric acid (HCl) leaching, not only the generation of H3PO4and CaCl2 (via further precipitation) were realized but also the acid-insoluble residue [phosphorous-rock slag (PS)] rich in elements, that is, K, Al, Si, and so on, in the form of microcline (KAlSi3O8) and quartz (SiO2) was obtained and became readily available for further HCl and KCl generation. Over 95 % of …


Effect Of Methyl Orange On Wettability Of Sandstone Formations: Implications For Enhanced Oil Recovery, Fatemah Alhamad, Mujahid Ali, Muhammad Ali, Hussein Abid, Hussein Hoteit, Stefan Iglauer, Alireza Keshavarz Jan 2022

Effect Of Methyl Orange On Wettability Of Sandstone Formations: Implications For Enhanced Oil Recovery, Fatemah Alhamad, Mujahid Ali, Muhammad Ali, Hussein Abid, Hussein Hoteit, Stefan Iglauer, Alireza Keshavarz

Research outputs 2022 to 2026

With the increasing global population, fossil fuel resources still represent a main contributor to the energy supply, despite the progress made in the field of renewable energies. Large quantities of residual oil from mature reservoirs cannot be produced through primary and secondary recovery methods. Among alternative recovery techniques, chemically enhanced oil recovery methods are attracting considerable interest to increase the hydrocarbon recovery from oil-bearing geological formations. The wettability of any particular formation can be used to predict the oil recovery factor of a reservoir based on its wetting state. However, due to the complex nature of geological porous media, special …


Highway Stormwater Runoff On-Site Treatment Using Bioslope With New Media Of Biochar Amended Topsoils, Ahmed I. Yunus Jan 2022

Highway Stormwater Runoff On-Site Treatment Using Bioslope With New Media Of Biochar Amended Topsoils, Ahmed I. Yunus

Electronic Theses and Dissertations

Georgia Department of Transportation (GDOT) has constructed various treatment facilities on its right-of-way (ROW) to collect and treat highway stormwater runoff, emphasizing total suspended solids (TSS) removal. The permit performance goal set by the Georgia Environmental Protection Division (EPD) is 80% TSS removal. Current stormwater best management practice (BMP) treatment facilities include complex and permanent infrastructures such as bioslope, bioretention basins, sand filters, infiltration trenches, and grass channels. Among these BMPs, bioslope has been becoming more popular due to its applicability for roadway embankments and areas with limited ROW constraints. It removes pollutants effectively by physical filtration and chemical adsorption …


Copper Nanoparticles In-Situ Anchored On Nitrogen-Doped Carbon For High-Efficiency Oxygen Reduction Reaction Electrocatalyst, Hui-Fang Yuan, Yue Zhang, Xing-Wu Zhai, Li-Bing Hu, Gui-Xian Ge, Gang Wang, Feng Yu, Bin Dai Dec 2021

Copper Nanoparticles In-Situ Anchored On Nitrogen-Doped Carbon For High-Efficiency Oxygen Reduction Reaction Electrocatalyst, Hui-Fang Yuan, Yue Zhang, Xing-Wu Zhai, Li-Bing Hu, Gui-Xian Ge, Gang Wang, Feng Yu, Bin Dai

Journal of Electrochemistry

Compared with noble metal platinum (Pt)-based catalysts, inexpensive non-noble metal electrocatalysts have attracted extensive attention for oxygen reduction reaction (ORR). Herein, chitosan as a kind of biomass resource rich in nitrogen and carbon was used to prepare nitrogen-doped carbon (N-C) and N-C in-situ anchored by copper nanoparticles (Cu/N-C). The as-obtained N-C and Cu/N-C nanoparticles were successfully used as non-noble eletrocatalysts tested for ORR. Compared with the N-C, the Cu/N-C showed the high surface area of 607.3 m 2·g-1 with the mean pore size of 2.5 nm and the pore volume of 0.40 cm3·g-1. The most positive Gibbs free …


Behavior Of Selective Oxygen Functional Groups Upon Hydrothermal Carbonization And Pyrolysis Of Biomass And Their Roles On Selective Applications, Nepu Saha May 2021

Behavior Of Selective Oxygen Functional Groups Upon Hydrothermal Carbonization And Pyrolysis Of Biomass And Their Roles On Selective Applications, Nepu Saha

Theses and Dissertations

Hydrothermal carbonization (HTC) is a thermochemical process where biomass is treated in water under high temperature and corresponding vapor pressure. During HTC, biomass undergoes a series of reactions including hydrolysis, decarboxylation, dehydration, aromatization, and polymerization. As a result, a solid product is produced from biomass after HTC process, which is widely known as hydrochar. Depending on the HTC process conditions, a wide-variety of oxygen-containing groups formed on hydrochar surfaces. Many of these groups could play critical roles in applications such as adsorption, and energy and gas storage, etc. However, not all functional groups are exposed on the surface due to …