Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Entire DC Network

Transforming Corn Stover To Useful Transport Fuel Blends In Resource-Limited Settings, Nicholas Munu, Noble Banadda, Nicholas Kiggundu, Ahamada Zziwa, Isa Kabenge, Jeffrey Seay, Robert Kambugu, Joshua Wanyama, Albrecht Schmidt Feb 2021

Transforming Corn Stover To Useful Transport Fuel Blends In Resource-Limited Settings, Nicholas Munu, Noble Banadda, Nicholas Kiggundu, Ahamada Zziwa, Isa Kabenge, Jeffrey Seay, Robert Kambugu, Joshua Wanyama, Albrecht Schmidt

Chemical and Materials Engineering Faculty Publications

Development of local technologies is crucial to the sustainable energy agenda in resource-limited countries and the world. Strengthening local green technologies and promoting local utilization will reduce carbon emissions that could be generated during transportation and delivery of green products from one country to another. In this paper we developed bio-oil/diesel blends using a low-tech pyrolysis system designed for smallholder farmers in developing countries and tested their appropriateness for diesel engines using standard ASTM methods. Corn stover retrieved from smallholder farmers in Gayaza, Uganda were pyrolyzed in a batch rocket stove reactor at 350 °C and liquid bio-oil harvested. Bio-oil …


The Effect Of Moox Reducibility On Its Activity For Anisole Hydrodeoxygenation, Chantal Walker Dec 2020

The Effect Of Moox Reducibility On Its Activity For Anisole Hydrodeoxygenation, Chantal Walker

Electronic Thesis and Dissertation Repository

Catalytic hydrodeoxygenation (HDO) is a process for upgrading crude bio-oil as it has a high oxygen content which causes several undesirable properties. Current methods for HDO use sulfided NiMo and CoMo or supported noble metal catalysts which hydrogenate aromatic rings, leading to less valuable products and increasing the hydrogen consumption. Using 10 wt. % MoO3 supported on ZrO2, TiO2, γ-Al2O3, SiO2 and CeO2, we investigated the atmospheric HDO of anisole, a model compound, at 350 °C. All catalysts achieved C – O bond cleavage, preserving the aromatic ring. In situ UV-Vis spectroscopy showed a peak corresponding to intervalence charge transfer …


Development Of Technologies For High Value Products From Biomass Pyrolysis, Chiara Barbiero Aug 2020

Development Of Technologies For High Value Products From Biomass Pyrolysis, Chiara Barbiero

Electronic Thesis and Dissertation Repository

Phragmites australis (Cav.) Trin. ex. Steud. is an invasive perennial grass found in North America, which is rapidly spreading throughout Ontario, damaging the native ecosystem and endangering the wildlife. This infestation has caused a decrease in biodiversity and nutrient availability to the agricultural crops through competition. One of the most effective management practices is spading them, leaving a huge number of dead stalks that need to be disposed of. Pyrolysis was selected as an alternative thermochemical method to convert this feedstock to value-added bioproducts, such as bio-oil and biochar, and to produce valuable renewable chemicals from the pyrolysis oil, such …


Pyrolysis Of Miscanthus And Products Characterization, Arshdeep Singh Aug 2019

Pyrolysis Of Miscanthus And Products Characterization, Arshdeep Singh

Electronic Thesis and Dissertation Repository

Miscanthus, an invasive crop, has recently gained attention as an emerging energy crop because of certain features such as adaptability to lower temperature, efficient use of water and nutrients, low or no need of nitrogen fertilizers, high biomass yield, fast growing cycle and less intensive agricultural cultivation practices than other energy crops, such as corn.

The literature review is focused on the value-added applications and conversion of Miscanthus for bioenergy and biomaterial applications. The thermochemical conversion technologies reviewed in this chapter include pyrolysis, liquefaction, torrefaction and gasification, whereas biochemical conversion technologies include enzymatic saccharification and fermentation.

In this work, …


Development Of A Mobile 100 Kg/H Plant For Pyrolysis Using A Mechanically Fluidized Reactor, Dhiraj Kankariya, Stefano Tacchino, Dominic Pjontek, Franco Berruti, Cedric Briens Jun 2016

Development Of A Mobile 100 Kg/H Plant For Pyrolysis Using A Mechanically Fluidized Reactor, Dhiraj Kankariya, Stefano Tacchino, Dominic Pjontek, Franco Berruti, Cedric Briens

5th International Congress on Green Process Engineering (GPE 2016)

Current pyrolysis processes perform the thermal decomposition of biomass into a liquid bio-oil, bio-char and non-condensable gases, at around 500 °C, without the addition of oxygen gas. The bio-oil is a complex mixture of many components that is used either as a substitute for fuel oil or for applications such as liquid smoke and bio-phenol resins that do not require pure chemicals.

The large-scale mechanical fluidized reactor (MFR) is a new technology for the pyrolysis of biomass developed by ICFAR, which does not require a sand bed and, thus, provides an undiluted solid char residue, which is essential to realize …


Catalytic Property Of Olivine For Bio-Oil Gasification, Mohammad Latifi, Franco Berruti, Cedric Briens Jun 2016

Catalytic Property Of Olivine For Bio-Oil Gasification, Mohammad Latifi, Franco Berruti, Cedric Briens

5th International Congress on Green Process Engineering (GPE 2016)

Introduction

Biomass is an attractive renewable source of fuel and energy. Thermochemical processes can convert biomass to a liquid bio-oil or to a syngas. The advantage of using bio-oil as an intermediate is that, in contrast with both raw biomass and gas, it can easily be produced in small distributed units, stored and transported. Not only can platform chemicals and clean fuels be produced from syngas, but hydrogen is itself an alternative fuel. A high hydrogen production is usually desired: for example, methanol production requires a syngas with a molar H2/CO ratio of 2. Therefore, maximum hydrogen production …


Development And Applications Of A Novel Intermittent Solids Feeder For Pyrolysis Reactors, Federico M. Berruti Sep 2013

Development And Applications Of A Novel Intermittent Solids Feeder For Pyrolysis Reactors, Federico M. Berruti

Electronic Thesis and Dissertation Repository

This PhD research addresses the challenge of feeding biomass residues into fluidized bed reactors for pyrolysis, through the development of a novel intermittent solid slug feeder, both for laboratory-scale and large-scale reactors. The new feeder can successfully handle biomass residues that are either too cohesive or thermally sensitive for traditional feeders.

To optimize the novel feeder performance, a model for the pulsating solids flow was developed from experimental data collected with ideal slugs, as well as real biomass flow. The model was validated using both a laboratory-scale (< 10 kg/hr) and large-scale feeder (> 250 kg/hr). Several important variables were identified. They include the material flow …