Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering

PDF

2018

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 716

Full-Text Articles in Entire DC Network

The Cooperative Effects Of Channel Length-Bias, Width Asymmetry, Gradient Steepness, And Contact-Guidance On Fibroblasts’ Directional Decision Making, Quang Long Pham Dec 2018

The Cooperative Effects Of Channel Length-Bias, Width Asymmetry, Gradient Steepness, And Contact-Guidance On Fibroblasts’ Directional Decision Making, Quang Long Pham

Dissertations

Cell migration in complex micro-environments, that are similar to tissue pores, is important for predicting locations of tissue nucleation and optimizing scaffold architectures. Firstly, how fibroblast cells - relevant to tissue engineering, affect each other’s directional decisions when encountered with a bifurcation of different channel lengths was investigated. It was found that cell sequence and cell mitosis influence the directional choices that the cells made while chemotaxing. Specifically, the fibroblasts chose to alternate between two possible paths - one longer and the other shorter - at a bifurcation. This finding was counter-intuitive given that the shorter path had a steeper …


Experimental And Numerical Characterization Of Multiphase Subsurface Oil Release, Feng Gao Dec 2018

Experimental And Numerical Characterization Of Multiphase Subsurface Oil Release, Feng Gao

Dissertations

Subsurface oil release is commonly encountered in the natural environment and engineering applications and has received the substantial attention of researchers after the disastrous Deepwater Horizon Blowout oil spill in 2009. The main focus on the present research is to systematically study the hydrodynamics of underwater oil jet under a variety of conditions, including the effect of dispersant and different gas to oil ratios (GOR) by using experimental measurement as well as a Computational Fluid Dynamics (CFD) approach, from which the measured turbulent characteristics (e.g., velocity, turbulent kinetic energy, turbulence dissipation rate, etc.) of underwater oil jet are thoroughly examined …


Overcoming Conventional Modeling Limitations Using Image- Driven Lattice-Boltzmann Method Simulations For Biophysical Applications, Olufemi E. Kadri Dec 2018

Overcoming Conventional Modeling Limitations Using Image- Driven Lattice-Boltzmann Method Simulations For Biophysical Applications, Olufemi E. Kadri

Dissertations

The challenges involved in modeling biological systems are significant and push the boundaries of conventional modeling. This is because biological systems are distinctly complex, and their emergent properties are results of the interplay of numerous components/processes. Unfortunately, conventional modeling approaches are often limited by their inability to capture all these complexities. By using in vivo data derived from biomedical imaging, image-based modeling is able to overcome this limitation.

In this work, a combination of imaging data with the Lattice-Boltzmann Method for computational fluid dynamics (CFD) is applied to tissue engineering and thrombogenesis. Using this approach, some of the unanswered questions …


Interactions Between Polymer Nanoparticles And Blood Plasma Applied To Drug Delivery Systems, Mark Bannon Dec 2018

Interactions Between Polymer Nanoparticles And Blood Plasma Applied To Drug Delivery Systems, Mark Bannon

Theses

Targeted nanoparticle drug delivery has the potential to replace current forms of cancer therapy with previously unparalleled efficiency. Upon introduction into the human body, nanoparticles exhibit a substantial increase in diameter due to a biomolecular corona formation caused by interactions between blood plasma proteins and the nanoparticles. These interactions must be analyzed and understood for targeted delivery to reach its potential in both feasibility and efficiency.

To study the formation of the protein corona, polystyrene nanoparticles were incubated in vitro in goat blood plasma for 10-minute intervals, diluted to different degrees and then measured to obtain the hydrodynamic diameter of …


Performance Of C2H4 Reductant In Activated-Carbon-Supported Mnox-Based Scr Catalyst At Low Temperatures, Guangli Liu, Dongtai Han, Jie Cheng, Yongshi Feng, Wenbin Quan, Li Yang, Kozo Saito Dec 2018

Performance Of C2H4 Reductant In Activated-Carbon-Supported Mnox-Based Scr Catalyst At Low Temperatures, Guangli Liu, Dongtai Han, Jie Cheng, Yongshi Feng, Wenbin Quan, Li Yang, Kozo Saito

Mechanical Engineering Faculty Publications

Hydrocarbons as reductants show promising results for replacing NH3 in SCR technology. Therefore, considerable interest exists for developing low-temperature (< 200 °C) and environmentally friendly HC-SCR catalysts. Hence, C2H4 was examined as a reductant using activated-carbon-supported MnOx-based catalyst in low-temperature SCR operation. Its sensitivity to Mn concentration and operating temperature was parametrically studied, the results of which showed that the catalyst activity followed the order of 130 °C > 150 °C > 180 °C with an optimized Mn concentration near 3.0 wt.%. However, rapid deactivation of catalytic activity also occurred when using C2H4 as the reductant. The mechanism of deactivation was explored and is …


Voltage Distribution Of Self-Humidifying Air-Cooled Pemfc, Kai-Feng Tan, Wei-Rong Chen, Ming Han, Xue-Xia Zhang Dec 2018

Voltage Distribution Of Self-Humidifying Air-Cooled Pemfc, Kai-Feng Tan, Wei-Rong Chen, Ming Han, Xue-Xia Zhang

Journal of Electrochemistry

In this work, the self-adaptive characteristics of self-humidifying air-cooled PEMFC stack was investigated. The performance and the unit-cell voltage distribution of the stack were measured and analyzed through the unit-cell I-V curve fitting. The operating conditions for this experimental study were set as follows: hydrogen pressure at the anode was 2 bar, the fan power used for the reactant oxygen feed and stack cooling was at 0.3 W, and the duration and time gap of water purged from hydrogen chamber were 1 s and 10 s, respectively. The experimental results showed that the self-humidifying air-cooled PEMFC stack used for this …


Progress Of Self-Humidifying Membrane Electrode Assembly For Low Temperature Proton Exchange Membrane Fuel Cell, Bin Chi, Yue-Kun Ye, Shi-Jie Jiang, Shi-Jun Liao Dec 2018

Progress Of Self-Humidifying Membrane Electrode Assembly For Low Temperature Proton Exchange Membrane Fuel Cell, Bin Chi, Yue-Kun Ye, Shi-Jie Jiang, Shi-Jun Liao

Journal of Electrochemistry

The self/non-humidification membrane electrode assembly(SH-MEA)is an important pathway towards the self- humidification fuel cell and plays a crucial role for the large scale commercialization of low temperature proton exchange membrane fuel cell (LT-PEMFC), because it not only can reduce the volume and complexity of fuel cell system, resulting in the decrease of the cost, but also can improve the output power density of the fuel cell system. Currently, the researches on the self-humidifying MEA of LT-PEMFC mainly focus on three aspects: the preparation of self-humidification proton exchange membrane, the construction of self-humidification catalyst layer, and the construction of composite self-humidifying …


A Review Of Proton Exchange Membrane Fuel Cell Catalyst Layer By Electrospinning, Yong Liu, Han Ding, De-Chun Si, Jie Peng, Jian-Bo Zhang Dec 2018

A Review Of Proton Exchange Membrane Fuel Cell Catalyst Layer By Electrospinning, Yong Liu, Han Ding, De-Chun Si, Jie Peng, Jian-Bo Zhang

Journal of Electrochemistry

The limitation of catalyst layer for proton exchange membrane fuel cell (PEMFC) in cost, durability and performance constitutes the bottleneck for the commercialization of fuel cell vehicles. Electrospun catalyst layer, with high catalyst utilization, increased triple phase boundary (TPB) and triple phase channel (TPC), has been developed by many researchers. This paper reviews the research progress in the electrospun catalyst layer for PEMFC, combined with the author’s work. Firstly, the development progress of catalyst layer is summarized, and the catalyst layer is classified and analyzed based on its fabrication method and structure character. Next, the fabrication process, physical property characterization, …


Effects Of So2 In Air On Performance Of Direct Methanol Fuel Cell, Bin Qin, Fen-Ning Jing, Xue-Jing Sun, Gong-Quan Sun, Hai Sun Dec 2018

Effects Of So2 In Air On Performance Of Direct Methanol Fuel Cell, Bin Qin, Fen-Ning Jing, Xue-Jing Sun, Gong-Quan Sun, Hai Sun

Journal of Electrochemistry

Direct methanol fuel cells (DMFC) generally use oxygen as an oxidant. Contaminants such as sulfides and nitrides in the air can affect the performance of the DMFC. In this work, the effects of SO2 on the performance of DMFC were investigated and the mechanism of poisoning was analyzed, by means of constant current discharge curve, polarization performance curve, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). In the CV scan, the permeated methanol was oxidized at a low potential to eliminate its effect on the SO2 poisoning behavior test. The results showed that the SO2 poisoning resulted …


Fe-N Doped Hollow Carbon Nanospheres Linked By Carbon Nanotubes For Oxygen Reduction Reaction, Ya-Lin Zhang, Chi Chen, Liang-Liang Zou, Zhi-Qing Zou, Hui Yang Dec 2018

Fe-N Doped Hollow Carbon Nanospheres Linked By Carbon Nanotubes For Oxygen Reduction Reaction, Ya-Lin Zhang, Chi Chen, Liang-Liang Zou, Zhi-Qing Zou, Hui Yang

Journal of Electrochemistry

The development of non-precious metal catalysts for oxygen reduction reaction (ORR) is essential for large-scale application of proton exchange membrane fuel cells. Herein, we present the in situ formed Fe-N doped hollow carbon nanospheres linked by carbon nanotubes composite, synthesized by using ZIF-8 as sacrificed template to form polydopamine (PDA) hollow nanospheres, followed by complexing with FeCl3, high temperature heat-treatment and NH3-etching. ZIF-8 was gradually decomposed simultaneously with PDA coating due to the loss of Zn2+ grabbed by PDA. NH3 etching resulted in the improved surface area, while the reducibility of NH3 resulted in …


Acid Treated Carbon As Anodic Electrocatalysts Toward Direct Ascorbic Acid Alkaline Membrane Fuel Cells, He-Mu Chen, Chen-Xi Qiu, Yuan-Yuan Cong, Hui-Yuan Liu, Zi-Hui Zhai, Yu-Jiang Song Dec 2018

Acid Treated Carbon As Anodic Electrocatalysts Toward Direct Ascorbic Acid Alkaline Membrane Fuel Cells, He-Mu Chen, Chen-Xi Qiu, Yuan-Yuan Cong, Hui-Yuan Liu, Zi-Hui Zhai, Yu-Jiang Song

Journal of Electrochemistry

In order to improve the hydrophilicity and electrocatalytic activity, commercial carbon black (BP 2000) was subjected to acid treatment to obtain acid-treated carbon (ATC). The generation of rich oxygen-containing groups on the surface of the ATC was proved by X-ray photoelectron spectra (XPS), Fourier transform-infra red spectra (FTIR), thermogravimetric analysis (TG) and contact angle measurement. UV-vis spectra were firstly recorded to calculate activation energy (Ea) of ascorbic acid (AA) chemical oxidation in alkaline conditions by oxygen in air and the Ea value was determined to be 37.1 kJ·mol-1. Additionally, electrochemical impedance spectra (EIS) were used to evaluate unprecedented …


Durability Performance Of The High-Power Fuel Cell System, Ke-Yong Wang, Wei-Yu Shi, Ren-Fang Wang, Jia Liu, Zhong-Jun Hou Dec 2018

Durability Performance Of The High-Power Fuel Cell System, Ke-Yong Wang, Wei-Yu Shi, Ren-Fang Wang, Jia Liu, Zhong-Jun Hou

Journal of Electrochemistry

Fuel cell durability is the crucial challenge in fuel cell vehicle, and the lifetime of more than 5000 hours is believed to be necessary for vehicle application. Few works on durability test of the full fuel cell system have been reported. In this work, the long lifetime HySYS-30 fuel cell system was developed in Sunrise Power based on the improved MEA durability and system control strategy. The durability performance of the system was investigated under vehicle duty cycle for more than 6000 hours, and only 8.1% performance loss was observed, implying that the durability of HySYS-30 fuel cell system could …


Recent Progress In Pt-Based Catalysts For Oxygen Reduction Reaction, Jing Li, Xin Feng, Zi-Dong Wei Dec 2018

Recent Progress In Pt-Based Catalysts For Oxygen Reduction Reaction, Jing Li, Xin Feng, Zi-Dong Wei

Journal of Electrochemistry

One major challenge for a large-scale commercialization of the proton-exchange membrane fuel cells (PEMFCs) technologies that enable a shift to ‘zero-emission’ personal transportation, is the expensive and unstable Pt catalysts, which are mainly used to catalyze the sluggish kinetics of the oxygen reduction reaction (ORR) occurred on the air electrode of PEMFCs. Many research works have targets to improve the stability of Pt-based catalysts and to construct Pt/transitional metal alloys with low Pt loading amount. Herein, we provide a minireview for the Pt-based ORR catalysts based on our recent work, which covers a brief background introduction, the stability improvement of …


Caging Porous Co-N-C Nanocomposites In 3d Graphene As Active And Aggregation-Resistant Electrocatalyst For Oxygen Reduction Reaction, Lu-Yang Xiu, Meng-Zhou Yu, Peng-Ju Yang, Zhi-Yu Wang, Jie-Shan Qiu Dec 2018

Caging Porous Co-N-C Nanocomposites In 3d Graphene As Active And Aggregation-Resistant Electrocatalyst For Oxygen Reduction Reaction, Lu-Yang Xiu, Meng-Zhou Yu, Peng-Ju Yang, Zhi-Yu Wang, Jie-Shan Qiu

Journal of Electrochemistry

Oxygen reduction reaction (ORR) is the cornerstone reaction of many renewable energy technologies such as fuel cells and rechargeable metal-air batteries. The Pt-based electrocatalysts exhibit the highest activity toward ORR, but their large implementation is greatly prohibiting by unaffordable cost and inferior durability. During electrode manufacturing and electrochemical reaction, severe aggregation of catalyst nanoparticles induced by size effect further limits the operational performance of electrocatalysts. We report a new strategy for fabrication of active and aggregation-resistant ORR electrocatalyst by caging metal-organic frameworks derived Co-N-C nanocomposites in permeable and porous 3D graphene cages via sprayed drying the mixed colloids of ZIF-67 …


Palladium Adatoms On Gold Nanoparticles As Electrocatalysts For Ethanol Electro-Oxidation In Alkaline Solutions, Hui-Mei Chen, Shang-Qian Zhu, Jia-Le Huang, Min-Hua Shao Dec 2018

Palladium Adatoms On Gold Nanoparticles As Electrocatalysts For Ethanol Electro-Oxidation In Alkaline Solutions, Hui-Mei Chen, Shang-Qian Zhu, Jia-Le Huang, Min-Hua Shao

Journal of Electrochemistry

Palladium (Pd) is a good catalyst for ethanol electro-oxidation in alkaline solutions. The activity of Pd is further improved in this study by modifying the gold (Au) nanoparticles with Pd adatoms using a simple spontaneous deposition process. The Pd overlayer on the Au core (Au@Pd) is un-uniform with some Au atoms exposed to the electrolyte. The activity of Au@Pd/C toward ethanol oxidation reaction (EOR) is much higher than that of Pd/C in an alkaline solution. The peak current density of Au@Pd/C is 4.6 times higher than that of Pd/C with a 100 mV lower onset potential. The enhanced activity may …


Stabilization Strategies Of Pt Catalysts Forproton Exchange Membrane Fuel Cells, Da-Ping He, Shi-Chun Mu Dec 2018

Stabilization Strategies Of Pt Catalysts Forproton Exchange Membrane Fuel Cells, Da-Ping He, Shi-Chun Mu

Journal of Electrochemistry

The low service lifetime of proton exchange membrane fuel cells (PEMFCs) is the main bottleneck for their commercial applications. One of the main factors is that the expensive metal Pt catalyst is easy to degradation under the harsh working environment of PEMFC (such as variable voltage, strong acidity, gas-liquid two-phase flow), which leads to the inevitable decay of the catalytic performance, thus, seriously restricting the lifetime of PEMFC. Therefore, the electrochemical stability of Pt-based electrocatalysts has become an important and hot topic to improve the PEMFC lifetime. In this paper, we review the recent development in enhancing the stability of …


Research Progress In Hydrogen Evolution Low Noble/Non-Precious Metal Catalysts Of Water Electrolysis, Yang Li, Zhao-Yan Luo, Jun-Jie Ge, Chang-Peng Liu, Wei Xing Dec 2018

Research Progress In Hydrogen Evolution Low Noble/Non-Precious Metal Catalysts Of Water Electrolysis, Yang Li, Zhao-Yan Luo, Jun-Jie Ge, Chang-Peng Liu, Wei Xing

Journal of Electrochemistry

Hydrogen energy technology with hydrogen as an energy carrier is gaining more and more attention due to its cleanliness and high energy density. Hydrogen fuel cell vehicles have been listed as one of the ultimate energy technologies in the 21st century. Among them, sustainable hydrogen production technology is a necessary prerequisite for the future development of hydrogen energy economy. Electrolyzed water technology driven by renewable resources represents an important way to support the sustainable development of hydrogen energy economy. The development and utilization of high activity, low cost hydrogen evolution catalysts is a key factor in improving the efficiency and …


Fuel Cells Reactor For Chemicals And Electric Energy Cogeneration, Zhi-Lin Heng, Xiao-Zi Yuan, Yi-Mei Yin, Zi-Feng Ma Dec 2018

Fuel Cells Reactor For Chemicals And Electric Energy Cogeneration, Zhi-Lin Heng, Xiao-Zi Yuan, Yi-Mei Yin, Zi-Feng Ma

Journal of Electrochemistry

As an energy conversion device, fuel cells can efficiently convert chemical energy into electrical energy. With the developing of technology, it is used as a reactor to conduct the synthesis of high value-added chemicals while generating electrical energy. Having benefits such as mild reaction conditions, controllability of the reaction process, high selectivity of the product, as well as high efficiency of energy utilization, it is widely used in many fields such as preparation of high value-added industrial products, gas separation, water treatment, etc. This paper introduces the current trends and statuses of fuel cell reactors in the cogeneration of chemicals …


The Pilot Application Of Electrochemical Impedance Spectroscopy On Dynamic Proton Exchange Membrane Fuel Cell, Jian-Wei Guo, Jian-Long Wang Dec 2018

The Pilot Application Of Electrochemical Impedance Spectroscopy On Dynamic Proton Exchange Membrane Fuel Cell, Jian-Wei Guo, Jian-Long Wang

Journal of Electrochemistry

By analyzing Electrochemical Impedance Spectroscopy (EIS) in applications of dynamic proton exchange membrane fuel cell (PEMFC), bottlenecks which restrict EIS tool development have been pointed out in this paper. Though the high-frequency resistance in EIS is largely accepted as cell inner-resistance, this can only be applied for cell with low current. The low-frequency resistance is difficult to be realized due to its relation with mass transfer. Furthermore, the improved Randles equivalent circuits are built up preliminarily, thus, penetrating into studies for mass transfer reaction, cell operation/degeneration, and high temperature fuel cell. Inspiringly, EIS is becoming an analyzing tool for stack …


Facile Synthesis Of Pt-Cu Alloy Nanodendrites As High-Performance Electrocatalysts For Oxygen Reduction Reaction, Liu-Xuan Luo, Guang-Hua Wei, Shui-Yun Shen, Feng-Juan Zhu, Chang-Chun Ke, Xiao-Hui Yan, Jun-Liang Zhang Dec 2018

Facile Synthesis Of Pt-Cu Alloy Nanodendrites As High-Performance Electrocatalysts For Oxygen Reduction Reaction, Liu-Xuan Luo, Guang-Hua Wei, Shui-Yun Shen, Feng-Juan Zhu, Chang-Chun Ke, Xiao-Hui Yan, Jun-Liang Zhang

Journal of Electrochemistry

Structures and compositions have significant effects on the catalytic properties of nanomaterials. Herein, a facile etching-based method was employed to synthesize Pt-Cu nanodendrites (NDs) with uniform and homogeneous alloy structures for enhancing oxygen reduction reaction (ORR). The formation of dendritic morphology was ascribed to the etching effect caused by the oxidative etchants of the Br-/O2 pair. The atomic ratio of Pt/Cu in Pt-Cu NDs could be easily tuned by altering the ratio of the Pt/Cu precursors, without deteriorating the dendritic morphology. The most active carbon-supported Pt1Cu1 NDs (Pt1Cu1 NDs/C) exhibited the …


Pd/C Catalysts For Co2 Electroreduction To Co:Pd Loading Effect, Dun-Feng Gao, Cheng-Cheng Yan, Guo-Xiong Wang, Xin-He Bao Dec 2018

Pd/C Catalysts For Co2 Electroreduction To Co:Pd Loading Effect, Dun-Feng Gao, Cheng-Cheng Yan, Guo-Xiong Wang, Xin-He Bao

Journal of Electrochemistry

Nanostructured heterogeneous catalysts have been widely used in the electrochemical carbon dioxide (CO2) reduction reaction (CO2RR), which can simultaneously achieve the electrocatalytic conversion of CO2 to fuels and the storage of renewable energy sources. Carbon supported palladium nanoparticles (Pd/C) catalysts have been previously reported to show excellent CO2RR performance. However, the crucial role of the metal loading in supported electrocatalysts has been rarely reported. In this work, we study the Pd loading effect on the structure of Pd/C catalysts as well as their activity and selectivity of CO2RR to CO. The …


Morphological Control Of Ptcu2 Octahedron And Oxygen Reduction Electrocatalytic Performance Of Ptcu For Fuel Cell, Long-Sheng Cao, Lei Wan, Zhi-Gang Shao, Hong-Mei Yu, Ming Hou, Bao-Lian Yi Dec 2018

Morphological Control Of Ptcu2 Octahedron And Oxygen Reduction Electrocatalytic Performance Of Ptcu For Fuel Cell, Long-Sheng Cao, Lei Wan, Zhi-Gang Shao, Hong-Mei Yu, Ming Hou, Bao-Lian Yi

Journal of Electrochemistry

Platinum acetylacetonate (Pt(acac)2) and copper acetylacetonate (Cu(acac)2) were co-reduced to prepare PtCu2 octahedron alloy catalyst in N,N-dimethylformamiade by solvothermal method. The PtCu2 showed lattice compression, and high ratio of non-oxidized Pt with high electronic binding energy. All those structural features contributed to weak adsorption strength of oxygen species on Pt and lower d-band centre position. The influence of structure-directing agent on morphology of PtCu alloy was systematically studied. In the half cell test, as a result of the uniform morphology and regular octahedron of PtCu2 formed, the mass activity and area specific activity …


Fuel Cell Performance Curve After Mea Optimization Structural Optimization Of Low Pt Membrane Electrode Assembly, Yan Rao, Shang Li, Fen Zhou, Tian Tian, Qing Zhong, Zhao-Hui Wan, Jin-Ting Tan, Mu Pan Dec 2018

Fuel Cell Performance Curve After Mea Optimization Structural Optimization Of Low Pt Membrane Electrode Assembly, Yan Rao, Shang Li, Fen Zhou, Tian Tian, Qing Zhong, Zhao-Hui Wan, Jin-Ting Tan, Mu Pan

Journal of Electrochemistry

Membrane electrode assemblies (MEAs) are the key component of proton exchange membrane fuel cell. For a long time, much attention has been paid to develop MEA technology. At present, the research, development and industrialization of fuel cell has entered a new era. More strict requirements for MEA, especially for the reduction of Pt loading with a challenging target of 0.125 mg·W-1 have to be met. In this paper, the performance losses under low Pt loading are analyzed in terms of activation polarization, ohm polarization and mass-transfer polarization. It is proposed that research should be focused on the activity of …


Coating Component Migration In Paper Coatings, Emilia Purington Dec 2018

Coating Component Migration In Paper Coatings, Emilia Purington

Electronic Theses and Dissertations

In many applications such as in paints and coatings, pigments are mixed with polymeric binders to generate the final product. In the coating of paper, properties like strength, durability, and print quality are affected not only by the binder type, but the final location of the binder relative to the pigments and the fibers. During the application and drying of a paper coating, binder is known to migrate. A number of methods are available to measure the migration of latex or starch. However, all of these methods have some limitations, especially when starch, latex and kaolin are components of the …


Gait Rehabilitation Using Functional Electrical Stimulation Induces Changes In Ankle Muscle Coordination In Stroke Survivors: A Preliminary Study, Jessica L. Allen, Lena H. Ting, Trisha M. Kesar Dec 2018

Gait Rehabilitation Using Functional Electrical Stimulation Induces Changes In Ankle Muscle Coordination In Stroke Survivors: A Preliminary Study, Jessica L. Allen, Lena H. Ting, Trisha M. Kesar

Faculty & Staff Scholarship

No abstract provided.


The Creation, Validation, And Implementation Of The Engineering Process Safety Research Instrument, Brittany Lynn Butler Dec 2018

The Creation, Validation, And Implementation Of The Engineering Process Safety Research Instrument, Brittany Lynn Butler

Theses and Dissertations

The purpose of this study was to develop and validate an instrument that can measure how senior chemical engineering students make process safety decisions. The Engineering Process Safety Research Instrument (EPSRI) contains dilemmas that represent process safety scenarios, followed by three decision options, and 12-15 considerations that fall into pre-conventional, conventional, or post-conventional forms of reasoning. Three studies were completed as a part of this research. The content validation study ensured the dilemmas represented process safety scenarios, the considerations matched their perceived theoretical definitions, and that no content areas were omitted. This study resulted in validation of the content, following …


Determination Of Chemical Speciation Of Arsenic And Selenium In High-As Coal Combustion Ash By X-Ray Photoelectron Spectroscopy: Examples From A Kentucky Stoker Ash, Biao Fu, James C. Hower, Shifeng Dai, Sarah M. Mardon, Guijian Liu Dec 2018

Determination Of Chemical Speciation Of Arsenic And Selenium In High-As Coal Combustion Ash By X-Ray Photoelectron Spectroscopy: Examples From A Kentucky Stoker Ash, Biao Fu, James C. Hower, Shifeng Dai, Sarah M. Mardon, Guijian Liu

Center for Applied Energy Research Faculty and Staff Publications

Knowledge of the chemical speciation of arsenic and selenium in coal fly ash is essential in the evaluation of the environmental behavior of fly ash disposed in a landfill in a natural environment. In this study, a series of high-As coal fly ash from stoker boilers were collected to determine the chemical forms of arsenic and selenium. The ash surface chemical characteristics and the speciation of arsenic and selenium were characterized by X-ray photoelectron spectroscopy and X-ray-induced Auger electron spectroscopy. The results indicate that the surface enrichment ratio for selenium (63.3–309.5) is higher than that of arsenic (1.2–21.2). The Wagner …


Temperature Transient Analysis For Reservoir Characterization, Yilin Mao Dec 2018

Temperature Transient Analysis For Reservoir Characterization, Yilin Mao

LSU Doctoral Dissertations

Recent developments in downhole temperature measurements open new alternatives contributing to reservoir characterization. In this dissertation, novel forward and inverse models to analyze production- and injection-induced temperature signals are developed for conventional and unconventional reservoir applications. Important limitations of the proposed models are addressed by accounting for fluid property variations and complex production strategies.

Forward modeling approaches involve making relevant assumptions that allow rigorous analytical solutions to be constructed using Laplace transform, Method of Characteristics, and control volume analysis. Our results of the analytical models are benchmarked with those from commercial numerical simulation software. Multiple possible scenarios of conventional reservoirs …


Cfd Modeling Of Smoke Movement In An Atrium, Robin Wu Dec 2018

Cfd Modeling Of Smoke Movement In An Atrium, Robin Wu

UNLV Theses, Dissertations, Professional Papers, and Capstones

The purpose of this paper is to better understand the behavior of smoke movement in an atrium. Thus gives first responders and civilians in and out of building a better understanding

With the advancements of modern technology, computers and softwares make simulation models possible such as fire models to simulate fire and smoke movements. In this paper, a computational fluid dynamic (CFD) software Fire Dynamic Simulator (FDS) is used to conduct a series of atrium tests to investigate the effectiveness of smoke exhaust systems. FDS solves the Navier-Stokes equations appropriate for low speed flows (Ma < 0.3) with an emphasis on smoke, heat transport and CO2 concentrations from fires. The default turbulence model used in FDS simulation is the Large Eddy Simulation (LES), which is the solution of Navier-Stokes equations at low speed.

The compartment tested was 9 …


Graphene Oxides In Water: Characterization, Reactivity, And Application, Siyuan An Dec 2018

Graphene Oxides In Water: Characterization, Reactivity, And Application, Siyuan An

McKelvey School of Engineering Theses & Dissertations

Recently discovered, graphene and graphene oxide materials have drawn considerable research attention due to outstanding and novel properties, which underpin wide material potential for a number of advanced applications including supercapacitors, solar cells, sensors, catalysts, semiconductors, sorbents, and membranes, among others. Graphene oxides (GO), which are considered as a family of oxidized graphene materials (derivatives), is a key precursor to the synthesis of free-standing graphene via oxidation-exfoliation-reduction pathways. GO properties depend on the synthesis routes/conditions (i.e. derivatization), including partially maintaining graphene (i.e. sp2) properties. Further, oxygen-containing functionalities (epoxy, hydroxyl, carbonyl, and carboxyl groups) render GO hydrophilic – and correspondingly stability …