Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Facile Synthesis Of Pt-Cu Alloy Nanodendrites As High-Performance Electrocatalysts For Oxygen Reduction Reaction, Liu-Xuan Luo, Guang-Hua Wei, Shui-Yun Shen, Feng-Juan Zhu, Chang-Chun Ke, Xiao-Hui Yan, Jun-Liang Zhang Dec 2018

Facile Synthesis Of Pt-Cu Alloy Nanodendrites As High-Performance Electrocatalysts For Oxygen Reduction Reaction, Liu-Xuan Luo, Guang-Hua Wei, Shui-Yun Shen, Feng-Juan Zhu, Chang-Chun Ke, Xiao-Hui Yan, Jun-Liang Zhang

Journal of Electrochemistry

Structures and compositions have significant effects on the catalytic properties of nanomaterials. Herein, a facile etching-based method was employed to synthesize Pt-Cu nanodendrites (NDs) with uniform and homogeneous alloy structures for enhancing oxygen reduction reaction (ORR). The formation of dendritic morphology was ascribed to the etching effect caused by the oxidative etchants of the Br-/O2 pair. The atomic ratio of Pt/Cu in Pt-Cu NDs could be easily tuned by altering the ratio of the Pt/Cu precursors, without deteriorating the dendritic morphology. The most active carbon-supported Pt1Cu1 NDs (Pt1Cu1 NDs/C) exhibited the …


Design Strategies Toward Highly Active Electrocatalysts For Oxygen Evolution Reaction, Tang Tang, Wen-Jie Jiang, Shuai Niu, Jin-Song Hu Oct 2018

Design Strategies Toward Highly Active Electrocatalysts For Oxygen Evolution Reaction, Tang Tang, Wen-Jie Jiang, Shuai Niu, Jin-Song Hu

Journal of Electrochemistry

Electrocatalytic water splitting is pivotal for efficient and economical production of hydrogen and oxygen gasses. However, the efficiency of the whole device is largely limited by the oxygen evolution reaction (OER) at the anode due to its sluggish kinetics. Thus, it is imperative to develop inexpensive, highly active OER catalysts to lower the reaction barriers. By examining the underlying critical factors for OER performance, this review outlines general principles for designing efficient nanosized OER catalysts, including (1) enhancing the intrinsic activity of active site by electronic modulation, crystallinity modulation, phase control, defect engineering and spin state engineering; (2) designing appropriate …


Electrocatalysts With High Activity And Stability For Polymer Electrolyte Membrane Fuel Cells, Zhongxin Song Sep 2018

Electrocatalysts With High Activity And Stability For Polymer Electrolyte Membrane Fuel Cells, Zhongxin Song

Electronic Thesis and Dissertation Repository

In addressing the activity and durability challenges facing electrocatalysts in polymer electrolyte membrane fuel cells (PEMFCs), atomic layer deposition (ALD) is emerging as a powerful technique for deposition of noble metals and transition metal oxides due to its exclusive advantages over other methods. The primary advantages of ALD are derived from the sequential, self-saturating, gas-surface reactions, and angstrom level control that take place during the deposition process. Therefore, ALD possesses the advantage in precisely control the particle size and uniform distribution on the substrate. By forming chemical bonds between the initial layer of ALD precursor and support atoms during the …


Recent Progress For Fe-N-C Electrocatalysts In Alkaline Fuel Cells, Xin Deng, Heng-Quan Chen, Ye Hu, Qing-Gang He Jun 2018

Recent Progress For Fe-N-C Electrocatalysts In Alkaline Fuel Cells, Xin Deng, Heng-Quan Chen, Ye Hu, Qing-Gang He

Journal of Electrochemistry

Fuel cells are highly recommended nowadays due to their intrinsic advantages such as high energy conversion efficiency, nearly no pollution, and convenient operation. With the development of anion exchange membrane, alkaline fuel cells have gone through a renaissance thanks to their superiorities such as faster reaction kinetics, wider choices for both fuels and electrocatalysts. It is essential to find an appropriate electrocatalyst for oxygen reduction reaction (ORR) to improve the performance of alkaline fuel cells. Further commercialization of the widely used Pt-based materials has suffered from disadvantages such as scarcity and high cost. As alternatives to largely investigated Pt-based materials, …


Title: Investigation Of Oxidative Reduction Reactions In Carbon-Based Electrocatalysts Presentation, Andrew Mason, Siamak Nejati, Shayan Kaviani Jan 2018

Title: Investigation Of Oxidative Reduction Reactions In Carbon-Based Electrocatalysts Presentation, Andrew Mason, Siamak Nejati, Shayan Kaviani

UCARE Research Products

The expense of commonly used electrocatalysts such as Platinum and Palladium, make many battery technologies and electrochemical reactions cost-prohibitive. A new group of promising low-cost catalysts is doped carbon complexes. These materials need further development to reach the same activity as traditional catalysts. But by examining the Oxidative Reduction Reactions (ORR) of various carbon complexes, desirable characteristics and geometries can be identified and enhanced. For this comparative analysis, a series of Carbon Nanotube (CNT) and Graphene Complexes were tested.