Open Access. Powered by Scholars. Published by Universities.®

Statistical Models Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Statistical Models

Statistical And Machine Learning Methods Evaluated For Incorporating Soil And Weather Into Corn Nitrogen Recommendations, Curtis J. Ransom, Newell R. Kitchen, James J. Camberato, Paul R. Carter, Richard B. Ferguson, Fabián G. Fernández, David W. Franzen, Carrie A. M. Laboski, D. Brenton Myers, Emerson D. Nafziger, John E. Sawyer, John F. Shanahan Aug 2019

Statistical And Machine Learning Methods Evaluated For Incorporating Soil And Weather Into Corn Nitrogen Recommendations, Curtis J. Ransom, Newell R. Kitchen, James J. Camberato, Paul R. Carter, Richard B. Ferguson, Fabián G. Fernández, David W. Franzen, Carrie A. M. Laboski, D. Brenton Myers, Emerson D. Nafziger, John E. Sawyer, John F. Shanahan

John E. Sawyer

Nitrogen (N) fertilizer recommendation tools could be improved for estimating corn (Zea mays L.) N needs by incorporating site-specific soil and weather information. However, an evaluation of analytical methods is needed to determine the success of incorporating this information. The objectives of this research were to evaluate statistical and machine learning (ML) algorithms for utilizing soil and weather information for improving corn N recommendation tools. Eight algorithms [stepwise, ridge regression, least absolute shrinkage and selection operator (Lasso), elastic net regression, principal component regression (PCR), partial least squares regression (PLSR), decision tree, and random forest] were evaluated using a dataset …


Hierarchical Modeling And Differential Expression Analysis For Rna-Seq Experiments With Inbred And Hybrid Genotypes, Andrew Lithio, Dan Nettleton Jul 2019

Hierarchical Modeling And Differential Expression Analysis For Rna-Seq Experiments With Inbred And Hybrid Genotypes, Andrew Lithio, Dan Nettleton

Dan Nettleton

The performance of inbred and hybrid genotypes is of interest in plant breeding and genetics. High-throughput sequencing of RNA (RNA-seq) has proven to be a useful tool in the study of the molecular genetic responses of inbreds and hybrids to environmental stresses. Commonly used experimental designs and sequencing methods lead to complex data structures that require careful attention in data analysis. We demonstrate an analysis of RNA-seq data from a split-plot design involving drought stress applied to two inbred genotypes and two hybrids formed by crosses between the inbreds. Our generalized linear modeling strategy incorporates random effects for whole-plot experimental …


Nested Hierarchical Functional Data Modeling And Inference For The Analysis Of Functional Plant Phenotypes, Yuhang Xu, Yehua Li, Dan Nettleton Jul 2019

Nested Hierarchical Functional Data Modeling And Inference For The Analysis Of Functional Plant Phenotypes, Yuhang Xu, Yehua Li, Dan Nettleton

Dan Nettleton

In a plant science Root Image Study, the process of seedling roots bending in response to gravity is recorded using digital cameras, and the bending rates are modeled as functional plant phenotype data. The functional phenotypes are collected from seeds representing a large variety of genotypes and have a three-level nested hierarchical structure, with seeds nested in groups nested in genotypes. The seeds are imaged on different days of the lunar cycle, and an important scientific question is whether there are lunar effects on root bending. We allow the mean function of the bending rate to depend on the lunar …


Root Type-Specific Reprogramming Of Maize Pericycle Transcriptomes By Local High Nitrate Results In Disparate Lateral Root Branching Patterns, Peng Yu, Jutta A. Baldauf, Andrew Lithio, Caroline Marcon, Dan Nettleton, Chunjian Li, Frank Hochholdinger Jul 2019

Root Type-Specific Reprogramming Of Maize Pericycle Transcriptomes By Local High Nitrate Results In Disparate Lateral Root Branching Patterns, Peng Yu, Jutta A. Baldauf, Andrew Lithio, Caroline Marcon, Dan Nettleton, Chunjian Li, Frank Hochholdinger

Dan Nettleton

The adaptability of root system architecture to unevenly distributed mineral nutrients in soil is a key determinant of plant performance. The molecular mechanisms underlying nitrate dependent plasticity of lateral root branching across the different root types of maize are only poorly understood. In this study, detailed morphological and anatomical analyses together with cell type-specific transcriptome profiling experiments combining laser capture microdissection with RNA-seq were performed to unravel the molecular signatures of lateral root formation in primary, seminal, crown, and brace roots of maize (Zea mays) upon local high nitrate stimulation. The four maize root types displayed divergent branching …


Stability Of Single-Parent Gene Expression Complementation In Maize Hybrids Upon Water Deficit Stress, Caroline Marcon, Anja Paschold, Waqas Ahmed Malik, Andrew Lithio, Jutta A. Baldauf, Lena Altrogge, Nina Opitz, Christa Lanz, Heiko Schoof, Dan Nettleton, Hans-Peter Piepho, Frank Hochholdinger Jul 2019

Stability Of Single-Parent Gene Expression Complementation In Maize Hybrids Upon Water Deficit Stress, Caroline Marcon, Anja Paschold, Waqas Ahmed Malik, Andrew Lithio, Jutta A. Baldauf, Lena Altrogge, Nina Opitz, Christa Lanz, Heiko Schoof, Dan Nettleton, Hans-Peter Piepho, Frank Hochholdinger

Dan Nettleton

Heterosis is the superior performance of F1 hybrids compared with their homozygous, genetically distinct parents. In this study, we monitored the transcriptomic divergence of the maize (Zea mays) inbred lines B73 and Mo17 and their reciprocal F1 hybrid progeny in primary roots under control and water deficit conditions simulated by polyethylene glycol treatment. Single-parent expression (SPE) of genes is an extreme instance of gene expression complementation, in which genes are active in only one of two parents but are expressed in both reciprocal hybrids. In this study, 1,997 genes only expressed in B73 and 2,024 genes …


Complementation Contributes To Transcriptome Complexity In Maize (Zea Mays L.) Hybrids Relative To Their Inbred Parents, Anja Paschold, Yi Jia, Caroline Marcon, Steve Lund, Nick B. Larson, Cheng-Ting Yeh, Stephan Ossowski, Christa Lanz, Dan Nettleton, Patrick S. Schnable, Frank Hochholdinger Jul 2019

Complementation Contributes To Transcriptome Complexity In Maize (Zea Mays L.) Hybrids Relative To Their Inbred Parents, Anja Paschold, Yi Jia, Caroline Marcon, Steve Lund, Nick B. Larson, Cheng-Ting Yeh, Stephan Ossowski, Christa Lanz, Dan Nettleton, Patrick S. Schnable, Frank Hochholdinger

Dan Nettleton

Typically, F1-hybrids are more vigorous than their homozygous, genetically distinct parents, a phenomenon known as heterosis. In the present study, the transcriptomes of the reciprocal maize (Zea mays L.) hybrids B73×Mo17 and Mo17×B73 and their parental inbred lines B73 and Mo17 were surveyed in primary roots, early in the developmental manifestation of heterotic root traits. The application of statistical methods and a suitable experimental design established that 34,233 (i.e., 86%) of all high-confidence maize genes were expressed in at least one genotype. Nearly 70% of all expressed genes were differentially expressed between the two parents and 42%–55% …


Non-Syntenic Genes Drive Rtcs-Dependent Regulation Of The Embryo Transcriptome During Formation Of Seminal Root Primordia In Maize (Zea Mays L.), Huanhuan Tai, Nina Opitz, Andrew Lithio, Xin Lu, Dan Nettleton, Frank Hochholdinger Jun 2019

Non-Syntenic Genes Drive Rtcs-Dependent Regulation Of The Embryo Transcriptome During Formation Of Seminal Root Primordia In Maize (Zea Mays L.), Huanhuan Tai, Nina Opitz, Andrew Lithio, Xin Lu, Dan Nettleton, Frank Hochholdinger

Dan Nettleton

Seminal roots of maize are pivotal for early seedling establishment. The maize mutant rootless concerning crown and seminal roots (rtcs) is defective in seminal root initiation during embryogenesis. In this study, the transcriptomes of wild-type and rtcs embryos were analyzed by RNA-Seq based on histological results at three stages of seminal root primordia formation. Hierarchical clustering highlighted that samples of each genotype grouped together along development. Determination of their gene activity status revealed hundreds of genes specifically transcribed in wild-type or rtcs embryos, while K-mean clustering revealed changes in gene expression dynamics between wild-type and rtcs during embryo …


Substantial Contribution Of Genetic Variation In The Expression Of Transcription Factors To Phenotypic Variation Revealed By Erd-Gwas, Hung-Ying Lin, Qiang Liu, Xiao Li, Jinliang Yang, Sanzhen Liu, Yinlian Huang, Michael J. Scanlon, Dan Nettleton, Patrick S. Schnable Jun 2019

Substantial Contribution Of Genetic Variation In The Expression Of Transcription Factors To Phenotypic Variation Revealed By Erd-Gwas, Hung-Ying Lin, Qiang Liu, Xiao Li, Jinliang Yang, Sanzhen Liu, Yinlian Huang, Michael J. Scanlon, Dan Nettleton, Patrick S. Schnable

Dan Nettleton

Background: There are significant limitations in existing methods for the genome-wide identification of genes whose expression patterns affect traits.

Results: The transcriptomes of five tissues from 27 genetically diverse maize inbred lines were deeply sequenced to identify genes exhibiting high and low levels of expression variation across tissues or genotypes. Transcription factors are enriched among genes with the most variation in expression across tissues, as well as among genes with higher-than-median levels of variation in expression across genotypes. In contrast, transcription factors are depleted among genes whose expression is either highly stable or highly variable across genotypes. We developed a …


A Diallel Analysis Of A Maize Donor Population Response To In Vivo Maternal Haploid Induction I: Inducibility, Gerald N. De La Fuente, Ursula K. Frei, Benjamin Trampe, Daniel Nettleton, Wei Zhang, Thomas Lubberstedt Jun 2019

A Diallel Analysis Of A Maize Donor Population Response To In Vivo Maternal Haploid Induction I: Inducibility, Gerald N. De La Fuente, Ursula K. Frei, Benjamin Trampe, Daniel Nettleton, Wei Zhang, Thomas Lubberstedt

Dan Nettleton

The maize in vivo maternal doubled haploid (DH) system is an important tool used by maize breeders and geneticists around the world. The ability to rapidly produce DH lines of maize for breeding allows breeders to quickly respond to new selection criteria based on the ever changing biotic and abiotic stresses that maize is subjected to across its growing area. There are two important steps in the generation of DH lines using the in vivo maternal DH system: 1) the production and identification of haploid progeny, and 2) the doubling of genomes to create fertile, diploid inbred lines that can …