Open Access. Powered by Scholars. Published by Universities.®

Statistical Models Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Statistical Models

Predicting Class-Imbalanced Business Risk Using Resampling, Regularization, And Model Ensembling Algorithms, Yan Wang, Sherry Ni Jan 2020

Predicting Class-Imbalanced Business Risk Using Resampling, Regularization, And Model Ensembling Algorithms, Yan Wang, Sherry Ni

Published and Grey Literature from PhD Candidates

We aim at developing and improving the imbalanced business risk modeling via jointly using proper evaluation criteria, resampling, cross-validation, classifier regularization, and ensembling techniques. Area Under the Receiver Operating Characteristic Curve (AUC of ROC) is used for model comparison based on 10-fold cross-validation. Two undersampling strategies including random undersampling (RUS) and cluster centroid undersampling (CCUS), as well as two oversampling methods including random oversampling (ROS) and Synthetic Minority Oversampling Technique (SMOTE), are applied. Three highly interpretable classifiers, including logistic regression without regularization (LR), L1-regularized LR (L1LR), and decision tree (DT) are implemented. Two ensembling techniques, including Bagging and Boosting, are …


Test Statistics Null Distributions In Multiple Testing: Simulation Studies And Applications To Genomics, Katherine S. Pollard, Merrill D. Birkner, Mark J. Van Der Laan, Sandrine Dudoit Jul 2005

Test Statistics Null Distributions In Multiple Testing: Simulation Studies And Applications To Genomics, Katherine S. Pollard, Merrill D. Birkner, Mark J. Van Der Laan, Sandrine Dudoit

U.C. Berkeley Division of Biostatistics Working Paper Series

Multiple hypothesis testing problems arise frequently in biomedical and genomic research, for instance, when identifying differentially expressed or co-expressed genes in microarray experiments. We have developed generally applicable resampling-based single-step and stepwise multiple testing procedures (MTP) for control of a broad class of Type I error rates, defined as tail probabilities and expected values for arbitrary functions of the numbers of false positives and rejected hypotheses (Dudoit and van der Laan, 2005; Dudoit et al., 2004a,b; Pollard and van der Laan, 2004; van der Laan et al., 2005, 2004a,b). As argued in the early article of Pollard and van der …