Open Access. Powered by Scholars. Published by Universities.®

Statistical Models Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Statistical Models

Carnivore And Ungulate Occurrence In A Fire-Prone Region, Sara J. Moriarty-Graves Jan 2023

Carnivore And Ungulate Occurrence In A Fire-Prone Region, Sara J. Moriarty-Graves

Cal Poly Humboldt theses and projects

Increasing fire size and severity in the western United States causes changes to ecosystems, species’ habitat use, and interspecific interactions. Wide-ranging carnivore and ungulate mammalian species and their interactions may be influenced by an increase in fire activity in northern California. Depending on the fire characteristics, ungulates may benefit from burned habitat due to an increase in forage availability, while carnivore species may be differentially impacted, but ultimately driven by bottom-up processes from a shift in prey availability. I used a three-step approach to estimate the single-species occupancy of four large mammal species: mountain lion (Puma concolor), coyote …


Methods For Estimating Mountain Goat Occupancy And Abundance, Molly Mcdevitt Jan 2019

Methods For Estimating Mountain Goat Occupancy And Abundance, Molly Mcdevitt

Graduate Student Theses, Dissertations, & Professional Papers

Abundance and occupancy are two parameters of central interest to the field of ecology. Furthermore, accurate (both precise and unbiased) estimates are key pieces to the puzzle of effective wildlife management decision-making. While there exist a variety of sampling techniques and statistical models for effectively estimating population parameters for frequently encountered and large mammals, methods for sampling unmarked and rare species are few and far between. The first step to acquiring usable parameter estimates is through the use of sampling theory and incorporation of probabilistic sampling designs to collect count-data and occurrence-data. Often, it is assumed that probabilistic sampling designs …