Open Access. Powered by Scholars. Published by Universities.®

Biostatistics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biostatistics

Estimation Of A Non-Parametric Variable Importance Measure Of A Continuous Exposure, Chambaz Antoine, Pierre Neuvial, Mark J. Van Der Laan Oct 2011

Estimation Of A Non-Parametric Variable Importance Measure Of A Continuous Exposure, Chambaz Antoine, Pierre Neuvial, Mark J. Van Der Laan

U.C. Berkeley Division of Biostatistics Working Paper Series

We define a new measure of variable importance of an exposure on a continuous outcome, accounting for potential confounders. The exposure features a reference level x0 with positive mass and a continuum of other levels. For the purpose of estimating it, we fully develop the semi-parametric estimation methodology called targeted minimum loss estimation methodology (TMLE) [van der Laan & Rubin, 2006; van der Laan & Rose, 2011]. We cover the whole spectrum of its theoretical study (convergence of the iterative procedure which is at the core of the TMLE methodology; consistency and asymptotic normality of the estimator), practical implementation, simulation …


Joint Multiple Testing Procedures For Graphical Model Selection With Applications To Biological Networks, Houston N. Gilbert, Mark J. Van Der Laan, Sandrine Dudoit Apr 2009

Joint Multiple Testing Procedures For Graphical Model Selection With Applications To Biological Networks, Houston N. Gilbert, Mark J. Van Der Laan, Sandrine Dudoit

U.C. Berkeley Division of Biostatistics Working Paper Series

Gaussian graphical models have become popular tools for identifying relationships between genes when analyzing microarray expression data. In the classical undirected Gaussian graphical model setting, conditional independence relationships can be inferred from partial correlations obtained from the concentration matrix (= inverse covariance matrix) when the sample size n exceeds the number of parameters p which need to estimated. In situations where n < p, another approach to graphical model estimation may rely on calculating unconditional (zero-order) and first-order partial correlations. In these settings, the goal is to identify a lower-order conditional independence graph, sometimes referred to as a ‘0-1 graphs’. For either choice of graph, model selection may involve a multiple testing problem, in which edges in a graph are drawn only after rejecting hypotheses involving (saturated or lower-order) partial correlation parameters. Most multiple testing procedures applied in previously proposed graphical model selection algorithms rely on standard, marginal testing methods which do not take into account the joint distribution of the test statistics derived from (partial) correlations. We propose and implement a multiple testing framework useful when testing for edge inclusion during graphical model selection. Two features of our methodology include (i) a computationally efficient and asymptotically valid test statistics joint null distribution derived from influence curves for correlation-based parameters, and (ii) the application of empirical Bayes joint multiple testing procedures which can effectively control a variety of popular Type I error rates by incorpo- rating joint null distributions such as those described here (Dudoit and van der Laan, 2008). Using a dataset from Arabidopsis thaliana, we observe that the use of more sophisticated, modular approaches to multiple testing allows one to identify greater numbers of edges when approximating an undirected graphical model using a 0-1 graph. Our framework may also be extended to edge testing algorithms for other types of graphical models (e.g., for classical undirected, bidirected, and directed acyclic graphs).


Multiple Tests Of Association With Biological Annotation Metadata, Sandrine Dudoit, Sunduz Keles, Mark J. Van Der Laan Mar 2006

Multiple Tests Of Association With Biological Annotation Metadata, Sandrine Dudoit, Sunduz Keles, Mark J. Van Der Laan

U.C. Berkeley Division of Biostatistics Working Paper Series

We propose a general and formal statistical framework for the multiple tests of associations between known fixed features of a genome and unknown parameters of the distribution of variable features of this genome in a population of interest. The known fixed gene-annotation profiles, corresponding to the fixed features of the genome, may concern Gene Ontology (GO) annotation, pathway membership, regulation by particular transcription factors, nucleotide sequences, or protein sequences. The unknown gene-parameter profiles, corresponding to the variable features of the genome, may be, for example, regression coefficients relating genome-wide transcript levels or DNA copy numbers to possibly censored biological and …


Application Of A Multiple Testing Procedure Controlling The Proportion Of False Positives To Protein And Bacterial Data, Merrill D. Birkner, Alan E. Hubbard, Mark J. Van Der Laan Aug 2005

Application Of A Multiple Testing Procedure Controlling The Proportion Of False Positives To Protein And Bacterial Data, Merrill D. Birkner, Alan E. Hubbard, Mark J. Van Der Laan

U.C. Berkeley Division of Biostatistics Working Paper Series

Simultaneously testing multiple hypotheses is important in high-dimensional biological studies. In these situations, one is often interested in controlling the Type-I error rate, such as the proportion of false positives to total rejections (TPPFP) at a specific level, alpha. This article will present an application of the E-Bayes/Bootstrap TPPFP procedure, presented in van der Laan et al. (2005), which controls the tail probability of the proportion of false positives (TPPFP), on two biological datasets. The two data applications include firstly, the application to a mass-spectrometry dataset of two leukemia subtypes, AML and ALL. The protein data measurements include intensity and …


Test Statistics Null Distributions In Multiple Testing: Simulation Studies And Applications To Genomics, Katherine S. Pollard, Merrill D. Birkner, Mark J. Van Der Laan, Sandrine Dudoit Jul 2005

Test Statistics Null Distributions In Multiple Testing: Simulation Studies And Applications To Genomics, Katherine S. Pollard, Merrill D. Birkner, Mark J. Van Der Laan, Sandrine Dudoit

U.C. Berkeley Division of Biostatistics Working Paper Series

Multiple hypothesis testing problems arise frequently in biomedical and genomic research, for instance, when identifying differentially expressed or co-expressed genes in microarray experiments. We have developed generally applicable resampling-based single-step and stepwise multiple testing procedures (MTP) for control of a broad class of Type I error rates, defined as tail probabilities and expected values for arbitrary functions of the numbers of false positives and rejected hypotheses (Dudoit and van der Laan, 2005; Dudoit et al., 2004a,b; Pollard and van der Laan, 2004; van der Laan et al., 2005, 2004a,b). As argued in the early article of Pollard and van der …