Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Quantum Physics

The Role Of Quantum Dot Size On The Performance Of Intermediate Band Solar Cells, Najla Alnami Dec 2014

The Role Of Quantum Dot Size On The Performance Of Intermediate Band Solar Cells, Najla Alnami

Graduate Theses and Dissertations

The goal of this thesis is to understand possible mechanisms for the reported decrease of the open circuit voltage and solar cell efficiency in quantum dot (QD) intermediate band solar cells (IBSCs). More specifically, the effect of indium arsenide (InAs) QD height on the open circuit voltage and solar cell efficiency was studied in a systematic way. To explore this effect in QD solar cells, several solar cells (SCs) were grown with varying InAs QD heights. All experimental characteristics of the QD solar cells were compared to a reference structure without QDs. All samples were grown by Molecular Beam Epitaxy …


Advanced Iii-V / Si Nano-Scale Transistors And Contacts: Modeling And Analysis, Seung Hyun Park Oct 2014

Advanced Iii-V / Si Nano-Scale Transistors And Contacts: Modeling And Analysis, Seung Hyun Park

Open Access Dissertations

The exponential miniaturization of Si CMOS technology has been a key to the electronics revolution. However, the continuous downscaling of the gate length becomes the biggest challenge to maintain higher speed, lower power, and better electrostatic integrity for each following generation. Hence, novel devices and better channel materials than Si are considered to improve the metal-oxide-semiconductor field-effect transistors (MOSFETs) device performance. III-V compound semiconductors and multi-gate structures are being considered as promising candidates in the next CMOS technology. III-V and Si nano-scale transistors in different architectures are investigated (1) to compare the performance between InGaAs of III-V compound semiconductors and …


Building Predictive Chemistry Models, Christopher Browne, Nicolas Onofrio, Alejandro Strachan Aug 2014

Building Predictive Chemistry Models, Christopher Browne, Nicolas Onofrio, Alejandro Strachan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Density Functional Theory (DFT) simulations allow for sophisticated modeling of chemical interactions, but the extreme computational cost makes it inviable for large scale applications. Molecular dynamics models, specifically ReaxFF, can model much larger simulations with greater speed, but with lesser accuracy. The accuracy of ReaxFF can be improved by comparing predictions of both methods and tuning ReaxFF’s parameters. Molecular capabilities of ReaxFF were gauged by simulating copper complexes in water over a 200 ps range, and comparing energy predictions against ReaxFF. To gauge solid state capabilities, volumetric strain was applied to simulated copper bulk and the strain response functions used …


Quantum Tuning Of Plasmons In Ultrathin Metal Films, Ao Teng Aug 2014

Quantum Tuning Of Plasmons In Ultrathin Metal Films, Ao Teng

Doctoral Dissertations

The surface plasmon is a coherent charge density oscillation localized at a metal surface. It can couple with light and the resulting plasmon-polariton hybrid mode is confined to volumes that are much smaller than the classical diffraction limit of light. Nano-plasmonics is a rapidly evolving field where light manipulation at the nanoscale may lead to novel applications. However, as the size of plasmonic devices approaches the quantum-size regime, the macroscopic picture of plasmon may no longer be valid. To elucidate the influence of the discretization of the single particle spectrum on the collective plasmon response, we performed a systematic study …


On Electromagnetic And Quantum Invisibility, Pattabhiraju Chowdary Mundru Jul 2014

On Electromagnetic And Quantum Invisibility, Pattabhiraju Chowdary Mundru

Doctoral Dissertations

The principle objective of this dissertation is to investigate the fundamental properties of electromagnetic wave interactions with artificially fabricated materials i.e., metamaterials for application in advanced stealth technology called electromagnetic cloaking. The main goal is to theoretically design a metamaterial shell around an object that completely eliminates the dipolar and higher order multipolar scattering, thus making the object invisible.

In this context, we developed a quasi-effective medium theory that determines the optical properties of multi-layered-composites beyond the quasi-static limit. The proposed theory exactly reproduces the far-field scattering/extinction cross sections through an iterative process in which mode-dependent quasi-effective impedances of the …


Insights Into The Epitaxial Relationships Between One-Dimensional Nanomaterials And Metal Catalyst Surfaces Using Density Functional Theory Calculations, Debosruti Dutta Jun 2014

Insights Into The Epitaxial Relationships Between One-Dimensional Nanomaterials And Metal Catalyst Surfaces Using Density Functional Theory Calculations, Debosruti Dutta

USF Tampa Graduate Theses and Dissertations

This dissertation involves the study of epitaxial behavior of one-dimensional nanomaterials like single-walled carbon nanotubes and Indium Arsenide nanowires grown on metallic catalyst surfaces. It has been previously observed in our novel microplasma based CVD growth of SWCNTs on Ni-Fe bimetallic nanoparticles that changes in the metal catalyst composition was accompanied by variations in the average metal-metal bond lengths of the nanoparticle and that in turn, affected nanotube chirality distributions. In this dissertation, we have developed a very simplistic model of the metal catalyst in order to explain the nanotube growth of specific nanotube chiralities on various Ni-Fe catalyst surfaces. …


Spannungsfeld, Julian Voss-Andreae Feb 2014

Spannungsfeld, Julian Voss-Andreae

The STEAM Journal

My design for a sculptural installation for the University of Minnesota’s new Physics and Nanotechnology Building is inspired by a view of the human body through the lens of quantum physics.

The German title of the installation (literally "tension field") originated in physics but is used in contemporary German almost exclusively in a metaphorical sense, implying a dynamic tension, often between polar opposites, that permeates everything in its vicinity.