Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Quantum Physics

Wigner High-Electron-Correlation Regime Of Nonuniform Density Systems: A Quantal-Density-Functional-Theory Study, Douglas Achan, Lou Massa, Viraht Sahni Aug 2014

Wigner High-Electron-Correlation Regime Of Nonuniform Density Systems: A Quantal-Density-Functional-Theory Study, Douglas Achan, Lou Massa, Viraht Sahni

Publications and Research

The Wigner regime of a system of electrons in an external field is characterized by a low electron density and a high electron-interaction energy relative to the kinetic energy. The low-correlation regime is in turn described by a high electron density and an electron-interaction energy smaller than the kinetic energy. The Wigner regime of a nonuniform-electron-density system is investigated via quantal density functional theory (QDFT). Within QDFT, the contributions of electron correlations due to the Pauli exclusion principle, Coulomb repulsion, and correlation-kinetic effects are separately delineated and explicitly defined. The nonuniform-electron-density system studied is that of the Hooke's atom in …


Environmental Testing Of Lasers For Jpl's Cold Atom Laboratory, Carey L. Baxter Aug 2014

Environmental Testing Of Lasers For Jpl's Cold Atom Laboratory, Carey L. Baxter

STAR Program Research Presentations

NASA’s Cold Atom Lab (CAL) is a multi-user facility designed to study ultra-cold quantum gases in the microgravity environment of the International Space Station (ISS). One of the main goals of CAL is to explore the unknown territory of extremely low temperatures—possibly as low as the picokelvin range!—where new and fascinating quantum phenomena can be observed. At such temperatures matter stops behaving as particles and instead becomes macroscopic matter waves. CAL will be remotely controlled to perform a multitude of experiments and is scheduled to launch in 2016. In order to anticipate problems that might occur during and post-launch, including …


Quantum Tuning Of Plasmons In Ultrathin Metal Films, Ao Teng Aug 2014

Quantum Tuning Of Plasmons In Ultrathin Metal Films, Ao Teng

Doctoral Dissertations

The surface plasmon is a coherent charge density oscillation localized at a metal surface. It can couple with light and the resulting plasmon-polariton hybrid mode is confined to volumes that are much smaller than the classical diffraction limit of light. Nano-plasmonics is a rapidly evolving field where light manipulation at the nanoscale may lead to novel applications. However, as the size of plasmonic devices approaches the quantum-size regime, the macroscopic picture of plasmon may no longer be valid. To elucidate the influence of the discretization of the single particle spectrum on the collective plasmon response, we performed a systematic study …


Quantum Optics Of Polaritonic Nanocomposites, Chris Racknor Apr 2014

Quantum Optics Of Polaritonic Nanocomposites, Chris Racknor

Electronic Thesis and Dissertation Repository

In this thesis, we study the quantum optical interaction in polaritonic nanocomposites. These systems are made by the combination of two or more micro- or nano-scale structures with complementary optical properties, such as polaritonic materials, excitonic materials, photonic crystals (PCs), quantum dots (QDs), waveguides, couplers, metal nanorods (MNRs), bionanoparticles. The nanocomposites systems studied included QDs doped within a polaritonic PC, an excitonic waveguide coupler, and a metamaterial waveguide. Also addressed are systems consisting of MNRs paired with biological labelling dye or QDs.

The application of a strain field, known as the acousto-optic effect, was found to control photon transmission in …


Wave Function For Harmonically Confined Electrons In Time-Dependent Electric And Magnetostatic Fields, Hong-Ming Zhu, Jin-Wang Chen, Xiao-Yin Pan, Viraht Sahni Jan 2014

Wave Function For Harmonically Confined Electrons In Time-Dependent Electric And Magnetostatic Fields, Hong-Ming Zhu, Jin-Wang Chen, Xiao-Yin Pan, Viraht Sahni

Publications and Research

We derive via the interaction “representation” the many-body wave function for harmonically confined electrons in the presence of a magnetostatic field and perturbed by a spatially homogeneous time-dependent electric field—the Generalized Kohn Theorem (GKT) wave function. In the absence of the harmonic confinement – the uniform electron gas – the GKT wave function reduces to the Kohn Theorem wave function. Without the magnetostatic field, the GKTwave function is the Harmonic Potential Theorem wave function. We further prove the validity of the connection between the GKT wave function derived and the system in an accelerated frame of reference. Finally, we provide …


A Numerical Assessment Of Cosmic-Ray Energy Diffusion Through Turbulent Media, M. Fatuzzo, F. Melia Jan 2014

A Numerical Assessment Of Cosmic-Ray Energy Diffusion Through Turbulent Media, M. Fatuzzo, F. Melia

Faculty Scholarship

No abstract provided.


Effects Of Turbulence On Cosmic Ray Propagation In Protostars And Young Stars, M. Fatuzzo, F. C. Adams Jan 2014

Effects Of Turbulence On Cosmic Ray Propagation In Protostars And Young Stars, M. Fatuzzo, F. C. Adams

Faculty Scholarship

No abstract provided.


Demonstrating Entanglement By Testing Bell's Theorem In Majorana Wires, David E. Drummond, Alexey Kovalev, Chang-Yu Hou, Kirill Shtengel, Leonid P. Pryadko Jan 2014

Demonstrating Entanglement By Testing Bell's Theorem In Majorana Wires, David E. Drummond, Alexey Kovalev, Chang-Yu Hou, Kirill Shtengel, Leonid P. Pryadko

Department of Physics and Astronomy: Faculty Publications

We propose an experiment that would establish the entanglement of Majorana zero modes in semiconductor nanowires by testing the Bell and Clauser-Horne-Shimony-Holt inequalities. Our proposal is viable with realistic system parameters, simple “keyboard” gating, and projective measurement. Theoretical models and simulation results indicate entanglement can be demonstrated with moderately accurate gate operations. In addition to providing further evidence for the existence of the Majorana bound states, our proposal could be used as an experimental stepping stone to more complicated braiding experiments.