Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Quantum Physics

Combinatorial Algorithms For Perturbation Theory And Application On Quantum Computing, Yudong Cao Dec 2016

Combinatorial Algorithms For Perturbation Theory And Application On Quantum Computing, Yudong Cao

Open Access Dissertations

Quantum computing is an emerging area between computer science and physics. Numerous problems in quantum computing involve quantum many-body interactions. This dissertation concerns the problem of simulating arbitrary quantum many-body interactions using realistic two-body interactions. To address this issue, a general class of techniques called perturbative reductions (or perturbative gadgets) is adopted from quantum complexity theory and in this dissertation these techniques are improved for experimental considerations. The idea of perturbative reduction is based on the mathematical machinery of perturbation theory in quantum physics. A central theme of this dissertation is then to analyze the combinatorial structure of the perturbation …


Photonicstd-2d: Modeling Light Scattering In Periodic Multilayer Photonic Structures, Alexey Bondarev, Shaimaa Azzam, Zhaxylyk Kudyshev, Alexander V. Kildishev Aug 2016

Photonicstd-2d: Modeling Light Scattering In Periodic Multilayer Photonic Structures, Alexey Bondarev, Shaimaa Azzam, Zhaxylyk Kudyshev, Alexander V. Kildishev

The Summer Undergraduate Research Fellowship (SURF) Symposium

Efficient modeling of electromagnetic processes in optical and plasmonic metamaterials is important for enabling new and exciting ways to manipulate light for advanced applications. In this work, we put together a tool for numerical simulation of propagation of normally incident light through a nanostructured multilayer composite material. The user builds a unit cell of a given material layer-by-layer starting from a substrate up to a superstrate, splitting each layer further into segments. The segments are defined by width and material -- dielectric, metal or active medium. Simulations are performed with the finite difference time domain (FDTD) method. A database of …


Ultracold Quantum Scattering In The Presence Of Synthetic Spin-Orbit Coupling, Su-Ju Wang Aug 2016

Ultracold Quantum Scattering In The Presence Of Synthetic Spin-Orbit Coupling, Su-Ju Wang

Open Access Dissertations

Two-body scattering constitutes one of the most fundamental processes in various physical systems ranging from ultracold dilute quantum gases to energetic quark- gluon plasmas. In this dissertation, we study the low-energy atomic collision physics in the presence of synthetic gauge fields, which are generated by atom-light interaction. One category of synthetic gauge fields is the artificial spin-orbit coupling. We discuss three different aspects in scattering theory: ultracold collision, scattering resonance, and bound state formation from a few-body perspective when the atomic spin states are coupled with their center-of-mass motion. The understanding of the spin-orbit effects on the modification of the …