Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Quantum Physics

Photonicstd-2d: Modeling Light Scattering In Periodic Multilayer Photonic Structures, Alexey Bondarev, Shaimaa Azzam, Zhaxylyk Kudyshev, Alexander V. Kildishev Aug 2016

Photonicstd-2d: Modeling Light Scattering In Periodic Multilayer Photonic Structures, Alexey Bondarev, Shaimaa Azzam, Zhaxylyk Kudyshev, Alexander V. Kildishev

The Summer Undergraduate Research Fellowship (SURF) Symposium

Efficient modeling of electromagnetic processes in optical and plasmonic metamaterials is important for enabling new and exciting ways to manipulate light for advanced applications. In this work, we put together a tool for numerical simulation of propagation of normally incident light through a nanostructured multilayer composite material. The user builds a unit cell of a given material layer-by-layer starting from a substrate up to a superstrate, splitting each layer further into segments. The segments are defined by width and material -- dielectric, metal or active medium. Simulations are performed with the finite difference time domain (FDTD) method. A database of …


Experimental Design And Construction For Critical Velocity Measurement In Spin-Orbit Coupled Bose-Einstein Condensates, Ting-Wei Hsu, Yong P. Chen Aug 2015

Experimental Design And Construction For Critical Velocity Measurement In Spin-Orbit Coupled Bose-Einstein Condensates, Ting-Wei Hsu, Yong P. Chen

The Summer Undergraduate Research Fellowship (SURF) Symposium

Quantum simulation using ultra-cold atoms, such as Bose-Einstein Condensates (BECs), offers a very flexible and well controlled environment to simulate physics in different systems. For example, to simulate the effects of spin orbit coupling (SOC) on electrons in solid state systems, we can make a SOC BEC which mimics the behavior of SOC electrons. The goal of this project is to see how the superfluid property of BECs change in the presence of SOC. In particular, we plan to measure the critical velocity of an 87Rb BEC with and without SOC by stirring it with a laser. This laser needs …


Building Predictive Chemistry Models, Christopher Browne, Nicolas Onofrio, Alejandro Strachan Aug 2014

Building Predictive Chemistry Models, Christopher Browne, Nicolas Onofrio, Alejandro Strachan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Density Functional Theory (DFT) simulations allow for sophisticated modeling of chemical interactions, but the extreme computational cost makes it inviable for large scale applications. Molecular dynamics models, specifically ReaxFF, can model much larger simulations with greater speed, but with lesser accuracy. The accuracy of ReaxFF can be improved by comparing predictions of both methods and tuning ReaxFF’s parameters. Molecular capabilities of ReaxFF were gauged by simulating copper complexes in water over a 200 ps range, and comparing energy predictions against ReaxFF. To gauge solid state capabilities, volumetric strain was applied to simulated copper bulk and the strain response functions used …


Elementary Studies Of Twisted Bilayer Graphene, Branden P. Burns, Yong P. Chen Oct 2013

Elementary Studies Of Twisted Bilayer Graphene, Branden P. Burns, Yong P. Chen

The Summer Undergraduate Research Fellowship (SURF) Symposium

In the nanotechnology field, some existing materials and applications are harmful to the environment, not efficient for certain tasks, or too expensive to be fully utilized. Graphene is a strong and cheap material that can be used to improve current nanotechnologies for more practical uses in society. Twisted bilayer graphene (TBG) is an orientation of graphene layers that exhibit different properties than regular bilayer graphene. It is made by placing a single layer of graphene on top of another at an angle with respect to the other lattice orientation. Understanding the characteristics of TBG is important to uncover more physics …


Investigation Of Major Intermolecular Interactions In 7,8-Dihydrobenzo(K)Phenanthridin-6(5h)-One Crystal Using Quantum Calculations And Crystallographic Visualization Programs, Zhiwei Liao, Tonglei Li, Mingtao Zhang Oct 2013

Investigation Of Major Intermolecular Interactions In 7,8-Dihydrobenzo(K)Phenanthridin-6(5h)-One Crystal Using Quantum Calculations And Crystallographic Visualization Programs, Zhiwei Liao, Tonglei Li, Mingtao Zhang

The Summer Undergraduate Research Fellowship (SURF) Symposium

Currently, tablets and capsules are the most common ways of delivering drugs. The active pharmaceutical ingredients and excipients used to make those tablets and capsules are in their crystalline form generally. However, a single molecule can form multiple different crystal structures because of different packing arrangements of the molecules. These different crystal structures have identical chemical composition but different properties such as solubility, density, stability, etc. This phenomenon is called polymorphism. Occurrence of polymorphism could be a disaster for both patients and pharmaceutical companies, as the drug could lose its efficacy due to changes in properties. Studying intermolecular interactions in …