Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Quantum Physics

Algebraic Shape Invariant Models, S Chaturvedi, Ranabir Dutt, Asim Gangopadhyaya, Prasanta K. Panigrahi, C. Rasinariu, Uday P. Sukhatme Jul 1998

Algebraic Shape Invariant Models, S Chaturvedi, Ranabir Dutt, Asim Gangopadhyaya, Prasanta K. Panigrahi, C. Rasinariu, Uday P. Sukhatme

Physics: Faculty Publications and Other Works

Motivated by the shape invariance condition in supersymmetric quantum mechanics, we develop an algebraic framework for shape invariant Hamiltonians with a general change of parameters. This approach involves nonlinear generalizations of Lie algebras. Our work extends previous results showing the equivalence of shape invariant potentials involving translational change of parameters with standard SO (2,1) potential algebra for Natanzon type potentials.


Shape Invariance And Its Connection To Potential Algebra, Asim Gangopadhyaya, Jeffrey Mallow, Uday P. Sukhatme May 1998

Shape Invariance And Its Connection To Potential Algebra, Asim Gangopadhyaya, Jeffrey Mallow, Uday P. Sukhatme

Physics: Faculty Publications and Other Works

Exactly solvable potentials of nonrelativistic quantum mechanics are known to be shape invariant. For these potentials, eigenvalues and eigenvectors can be derived using well known methods of supersymmetric quantum mechanics. The majority of these potentials have also been shown to possess a potential algebra, and hence are also solvable by group theoretical techniques. In this paper, for a subset of solvable problems, we establish a connection between the two methods and show that they are indeed equivalent.