Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Quantum Physics

Quantum State Estimation And Tracking For Superconducting Processors Using Machine Learning, Shiva Lotfallahzadeh Barzili Dec 2021

Quantum State Estimation And Tracking For Superconducting Processors Using Machine Learning, Shiva Lotfallahzadeh Barzili

Computational and Data Sciences (PhD) Dissertations

Quantum technology has been rapidly growing; in particular, the experiments that have been performed with superconducting qubits and circuit QED have allowed us to explore the light-matter interaction at its most fundamental level. The study of coherent dynamics between two-level systems and resonator modes can provide insight into fundamental aspects of quantum physics, such as how the state of a system evolves while being continuously observed. To study such an evolving quantum system, experimenters need to verify the accuracy of state preparation and control since quantum systems are very fragile and sensitive to environmental disturbance. In this thesis, I look …


Gravitational Wave Sensors Based On Superconducting Transducers, Armen Gulian, Joe Foreman, Vahan Nikoghosyan, Louis Sica, Pablo Abramian-Barco, Jeff Tollaksen, Gurgen Melkonyan, Iris Mowgood, Chris Burdette, Rajendra Dulal, Serafim Teknowijoyo, Sara Chahid, Shmuel Nussinov Nov 2021

Gravitational Wave Sensors Based On Superconducting Transducers, Armen Gulian, Joe Foreman, Vahan Nikoghosyan, Louis Sica, Pablo Abramian-Barco, Jeff Tollaksen, Gurgen Melkonyan, Iris Mowgood, Chris Burdette, Rajendra Dulal, Serafim Teknowijoyo, Sara Chahid, Shmuel Nussinov

Mathematics, Physics, and Computer Science Faculty Articles and Research

Following the initial success of LIGO, new advances in gravitational wave (GW) detector systems are planned to reach fruition during the next decades. These systems are interferometric and large. Here we suggest different, more compact detectors of GW radiation with competitive sensitivity. These nonresonant detectors are not interferometric. They use superconducting Cooper pairs in a magnetic field to transform mechanical motion induced by GW into detectable magnetic flux. The detectors can be oriented relative to the source of GW, so as to maximize the signal output and help determine the direction of nontransient sources. In this design an incident GW …


A Dynamical Quantum Cheshire Cat Effect And Implications For Counterfactual Communication, Yakir Aharonov, Eliahu Cohen, Sandu Popescu Aug 2021

A Dynamical Quantum Cheshire Cat Effect And Implications For Counterfactual Communication, Yakir Aharonov, Eliahu Cohen, Sandu Popescu

Mathematics, Physics, and Computer Science Faculty Articles and Research

Here we report a type of dynamic effect that is at the core of the so called “counterfactual computation” and especially “counterfactual communication” quantum effects that have generated a lot of interest recently. The basic feature of these counterfactual setups is the fact that particles seem to be affected by actions that take place in locations where they never (more precisely, only with infinitesimally small probability) enter. Specifically, the communication/computation takes place without the quantum particles that are supposed to be the information carriers travelling through the communication channel or entering the logic gates of the computer. Here we show …


Macroscopic Superposition States In Isolated Quantum Systems, Roman V. Buniy, Stephen D. H. Hsu Jul 2021

Macroscopic Superposition States In Isolated Quantum Systems, Roman V. Buniy, Stephen D. H. Hsu

Mathematics, Physics, and Computer Science Faculty Articles and Research

For any choice of initial state and weak assumptions about the Hamiltonian, large isolated quantum systems undergoing Schrödinger evolution spend most of their time in macroscopic superposition states. The result follows from von Neumann’s 1929 Quantum Ergodic Theorem. As a specific example, we consider a box containing a solid ball and some gas molecules. Regardless of the initial state, the system will evolve into a quantum superposition of states with the ball in macroscopically different positions. Thus, despite their seeming fragility, macroscopic superposition states are ubiquitous consequences of quantum evolution. We discuss the connection to many worlds quantum mechanics.


A New Method To Generate Superoscillating Functions And Supershifts, Yakir Aharonov, Fabrizio Colombo, Irene Sabadini, Tomer Shushi, Daniele C. Struppa, Jeff Tollaksen May 2021

A New Method To Generate Superoscillating Functions And Supershifts, Yakir Aharonov, Fabrizio Colombo, Irene Sabadini, Tomer Shushi, Daniele C. Struppa, Jeff Tollaksen

Mathematics, Physics, and Computer Science Faculty Articles and Research

Superoscillations are band-limited functions that can oscillate faster than their fastest Fourier component. These functions (or sequences) appear in weak values in quantum mechanics and in many fields of science and technology such as optics, signal processing and antenna theory. In this paper, we introduce a new method to generate superoscillatory functions that allows us to construct explicitly a very large class of superoscillatory functions.


Failed Attempt To Escape From The Quantum Pigeon Conundrum, Yakir Aharonov, Shrobona Bagchi, Justin Dressel, Gregory Reznik, Michael Ridley, Lev Vaidman Mar 2021

Failed Attempt To Escape From The Quantum Pigeon Conundrum, Yakir Aharonov, Shrobona Bagchi, Justin Dressel, Gregory Reznik, Michael Ridley, Lev Vaidman

Mathematics, Physics, and Computer Science Faculty Articles and Research

A recent criticism by Kunstatter et al. [Phys. Lett. A 384, 126686 (2020)] of a quantum setup violating the pigeon counting principle [Aharonov et al. PNAS 113, 532 (2016)] is refuted. The quantum nature of the violation of the pigeonhole principle with pre- and postselection is clarified.


On Conservation Laws In Quantum Mechanics, Yakir Aharonov, Sandu Popescu, Daniel Rohrlich Jan 2021

On Conservation Laws In Quantum Mechanics, Yakir Aharonov, Sandu Popescu, Daniel Rohrlich

Mathematics, Physics, and Computer Science Faculty Articles and Research

Conservation laws are one of the most important aspects of nature. As such, they have been intensively studied and extensively applied, and are considered to be perfectly well established. We, however, raise fundamental question about the very meaning of conservation laws in quantum mechanics. We argue that, although the standard way in which conservation laws are defined in quantum mechanics is perfectly valid as far as it goes, it misses essential features of nature and has to be revisited and extended.