Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Quantum Physics

Characterization Of Extended Uncertainty Principle Black Holes, Juan Uribe, Jonas Mureika Apr 2023

Characterization Of Extended Uncertainty Principle Black Holes, Juan Uribe, Jonas Mureika

Honors Thesis

Black Holes are special objects as they are at the intersection of Quantum Mechanics and General Relativity. A central tenant of quantum mechanics is the Uncertainty Principle that dictates we cannot know with complete certainty position and momentum at the same time. The Extended Uncertainty Principle introduces a position-related uncertainty correction L_* to account for General Relativity. In a previous paper, a black hole metric associated with the Extended Uncertainty Principle was derived, by modifying the metric function of a Schwarzschild black hole. This metric introduces near-horizon structures that should produce observable effects, such as love numbers, gravitational wave echoes, …


Black Holes, Disk Structures, And Cosmological Implications In E-Dimensional Space, Subhash Kak, Menas C. Kafatos Dec 2022

Black Holes, Disk Structures, And Cosmological Implications In E-Dimensional Space, Subhash Kak, Menas C. Kafatos

Mathematics, Physics, and Computer Science Faculty Articles and Research

We examine a modern view of the universe that builds on achieved successes of quantum mechanics, general relativity, and information theory, bringing them together in integrated approach that is founded on the realization that space itself is e-dimensional. The global and local implications of noninteger dimensionality are examined, and how it may have increased from the value of zero to its current value is investigated. We find surprising aspects that tie to structures in the universe, black holes, and the role of observations.


Chemical Potential In The First Law For Holographic Entanglement Entropy, David Kastor, Sourya Ray, Jennie Traschen Nov 2014

Chemical Potential In The First Law For Holographic Entanglement Entropy, David Kastor, Sourya Ray, Jennie Traschen

David Kastor

Entanglement entropy in conformal field theories is known to satisfy a first law. For spherical entangling surfaces, this has been shown to follow via the AdS/CFT correspondence and the holographic prescription for entanglement entropy from the bulk first law for Killing horizons. The bulk first law can be extended to include variations in the cosmological constant Λ, which we established in earlier work. Here we show that this implies an extension of the boundary first law to include varying the number of degrees of freedom of the boundary CFT. The thermodynamic potential conjugate to Λ in the bulk is called …


On The Universality Of Inner Black Hole Mechanics And Higher Curvature Gravity, Alejandra Castro, Nima Dehmami, Gaston Giribet, David Kastor Jul 2013

On The Universality Of Inner Black Hole Mechanics And Higher Curvature Gravity, Alejandra Castro, Nima Dehmami, Gaston Giribet, David Kastor

David Kastor

Black holes are famous for their universal behavior. New thermodynamic relations have been found recently for the product of gravitational entropies over all the horizons of a given stationary black hole. This product has been found to be independent of the mass for all such solutions of Einstein-Maxwell theory in d=4,5. We study the universality of this mass independence by introducing a number of possible higher curvature corrections to the gravitational action. We consider finite temperature black holes with both asymptotically flat and (A)dS boundary conditions. Although we find examples for which mass independence of the horizon entropy product continues …