Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Optics

Chapman University

2012

Articles 1 - 1 of 1

Full-Text Articles in Quantum Physics

Quantum Mutual Information Capacity For High-Dimensional Entangled States, P. Ben Dixon, Gregory A. Howland, James Schneeloch, John C. Howell Apr 2012

Quantum Mutual Information Capacity For High-Dimensional Entangled States, P. Ben Dixon, Gregory A. Howland, James Schneeloch, John C. Howell

Mathematics, Physics, and Computer Science Faculty Articles and Research

High-dimensional Hilbert spaces used for quantum communication channels offer the possibility of large data transmission capabilities. We propose a method of characterizing the channel capacity of an entangled photonic state in high-dimensional position and momentum bases. We use this method to measure the channel capacity of a parametric down-conversion state by measuring in up to 576 dimensions per detector. We achieve a channel capacity over 7  bits/photon in either the position or momentum basis. Furthermore, we provide a correspondingly high-dimensional separability bound that suggests that the channel performance cannot be replicated classically.