Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Elementary Particles and Fields and String Theory

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 28 of 28

Full-Text Articles in Quantum Physics

High-Performance Computing In Covariant Loop Quantum Gravity, Pietropaolo Frisoni Dec 2023

High-Performance Computing In Covariant Loop Quantum Gravity, Pietropaolo Frisoni

Electronic Thesis and Dissertation Repository

This Ph.D. thesis presents a compilation of the scientific papers I published over the last three years during my Ph.D. in loop quantum gravity (LQG). First, we comprehensively introduce spinfoam calculations with a practical pedagogical paper. We highlight LQG's unique features and mathematical formalism and emphasize the computational complexities associated with its calculations. The subsequent articles delve into specific aspects of employing high-performance computing (HPC) in LQG research. We discuss the results obtained by applying numerical methods to studying spinfoams' infrared divergences, or ``bubbles''. This research direction is crucial to define the continuum limit of LQG properly. We investigate the …


Black Hole Entropy In Ads/Cft And The Schwinger-Keldysh Formalism, Luke Mrini May 2023

Black Hole Entropy In Ads/Cft And The Schwinger-Keldysh Formalism, Luke Mrini

Undergraduate Honors Theses

The Schwinger-Keldysh formalism for non-equilibrium field theory provides valuable tools for studying the black hole information loss paradox. In particular, there exists a Noether-like procedure to obtain the entropy density of a system by a discrete Kubo-Martin-Schwinger (KMS) variation of the action. Here, this Noether-like procedure is applied to the boundary action of an asymptotically anti-de Sitter (aAdS) black hole spacetime in maximally extended Kruskal coordinates. The result is the Kubo formula for shear viscosity, which is known in theories with an Einstein gravity dual to have a universal, constant ratio with the entropy density and is proportional to the …


Geometry And Semiclassics Of Tetrahedral Grain Of Space, Santanu B. Antu Jan 2023

Geometry And Semiclassics Of Tetrahedral Grain Of Space, Santanu B. Antu

Senior Projects Spring 2023

The quantum theory of gravity has eluded physicists for many decades. The apparent contradiction between the physics describing the microscopic and the macroscopic regimes has given rise to some beautiful theories and mathematics. In this paper, we discuss some aspects of one of those theories, namely loop quantum gravity (LQG). Specifically, we discuss the discreteness of spacetime, a feature that distinguishes LQG from some of the other contending theories. After a general discussion in the introduction, we discuss the dynamics and quantization of the simplices (tetrahedra) that make up the space. The discrete geometry of these tetrahedral grains of space …


Lifetime Measurement Of The Xi_C^+ Using Belle Ii Monte Carlo, Paul Gebeline May 2022

Lifetime Measurement Of The Xi_C^+ Using Belle Ii Monte Carlo, Paul Gebeline

Honors Theses

This analysis uses simulated data from the Belle II experiment to measure the lifetime of the Xi_c^+ baryon. Three different decay modes are investigated to explore the feasibility and accuracy of such measurements at Belle II. The Xi_c^+ lifetime is measured using one of these modes after reducing backgrounds from sources other than the decay of interest. The final result is 464 +/- 15 fs, which is consistent with the expected result of 442 fs within uncertainty. This result shows that Belle II can make competitive measurements of particle properties and decays.


Thermalization And Quantum Information In Conformal Field Theory, Ashish Kakkar Jan 2022

Thermalization And Quantum Information In Conformal Field Theory, Ashish Kakkar

Theses and Dissertations--Physics and Astronomy

The consequences of the constraints of conformal symmetry are far-reaching within
theoretical physics. In this dissertation we address a series of questions in conformal
field theory: 1) We calculate the spectrum of qKdV charges in a large central charge
expansion. 2) We determine the corrections to bulk information geometry from 1/N
contributions to holographic correlators. 3) We study the higher genus partitions
functions of CFTs associated with classical and quantum error-correcting codes.


Neutron Spectroscopy Of The Parity-Violating 0.734 Ev Neutron Resonance In Lanthanum-139 In Preparation For The Noptrex Time Reversal Violation Experiment, Danielle Schaper Jan 2022

Neutron Spectroscopy Of The Parity-Violating 0.734 Ev Neutron Resonance In Lanthanum-139 In Preparation For The Noptrex Time Reversal Violation Experiment, Danielle Schaper

Theses and Dissertations--Physics and Astronomy

One of the most outstanding questions in physics is the matter-antimatter asymmetry of the Universe, resulting from excess baryogenesis processes during the early moments of the formation of the Universe. At present, the types of processes needed to explain this matter excess, so-called `CP-violating processes' are known to exist within the present framework of the Standard Model of particle physics. However, decades of research has shown that our understanding of the origin of these processes is incomplete, as we do not presently know of enough sources of CP-violating processes to account for the large baryon asymmetry that we observe. The …


Curved Spacetime In The Causal Set Approach To Quantum Gravity, Ayush Dhital May 2021

Curved Spacetime In The Causal Set Approach To Quantum Gravity, Ayush Dhital

Honors Theses

Causal Set theory is an approach to quantum gravity. In this approach, the spacetime continuum is assumed to be discrete rather than continuous. The discrete points in a causal set can be seen as a continuum spacetime if they can be embedded in a manifold such that the causal structure is preserved. In this regard, a manifold can be constructed by embedding a causal set preserving causal information between the neighboring points. In this thesis, some of the fundamental properties of causal sets are discussed and the curvature and dimension information of Minkowski, de Sitter, and Anti-de Sitter spaces is …


Exploring Manifoldlike Causal Sets And Their Dimensions, Santosh Bhandari Apr 2021

Exploring Manifoldlike Causal Sets And Their Dimensions, Santosh Bhandari

Honors Theses

Causal Set Theory is an approach to quantum gravity that tries to replace the continuum spacetime structure of general relativity with the spacetime that has the property of discreteness and causality. From the standpoint of causal set theory, our spacetime is made up of discrete points that are causally related to one another. A causal set is said to be manifoldlike if it can be faithfully embedded in a Lorentzian manifold. In this thesis, some of the fundamental properties of causal sets are discussed. The first chapter is devoted to the historical background of quantum gravity with a discussion of …


Exploring Qcd Factorization At Moderate Energy Scales, Eric Alan Moffat Apr 2021

Exploring Qcd Factorization At Moderate Energy Scales, Eric Alan Moffat

Physics Theses & Dissertations

Asymptotic freedom in QCD facilitates the use of partonic degrees of freedom over short distances, but physical processes are sensitive to a wide range of scales. Thus, it is necessary in QCD calculations to utilize a factorization scheme to separate a process into perturbative and non-perturbative factors. This separation relies on an assumption that one energy scale is infinitely larger than the other scales involved in the process. However, much experimental research in areas such as nucleon structure and quark-hadron duality occur at more moderate energy scales where that basic assumption may not be true but perturbative calculations should still …


Lorentz Violation In Neutrino Interactions, Pranav Jayaram Seetharaman Mar 2021

Lorentz Violation In Neutrino Interactions, Pranav Jayaram Seetharaman

Physics

Both the Standard Model of particle physics and General Relativity require Lorentz symmetry as a fundamental building block. In this paper, we learn about a framework called the Standard Model Extension that allows us to determine how physical phenomenon would change if we deviated from Lorentz invariance in the Standard Model and General Relativity. We use the Standard Model Extension to analyze a specific high-energy, astrophysical neutrino interaction that is only possible if Lorentz symmetry can be broken. The interaction we look at is the decay of a neutrino into an electron-positron pair, which is not possible in conventional physics. …


Topics In Quantum Quench And Entanglement, Sinong Liu Jan 2021

Topics In Quantum Quench And Entanglement, Sinong Liu

Theses and Dissertations--Physics and Astronomy

The dissertation includes two parts.

In Part I, we study non-equilibrium phenomena in various models associated with global quantum quench. It is known that local quantities, when subjected to global quantum quench across or approaching critical points, exhibit a variety of universal scaling behaviors at various quench rates. To investigate if similar scaling holds for non-local quantities, we consider the scaling behavior of circuit complexity under quantum quench across the critical massless point in Majorana fermion field theory of the one-dimensional integrable transverse field Ising model and find it obeys such scaling. To investigate if similar scaling holds for non-relativistic …


Small-X Qcd Calculations With A Biased Ensemble, Gary Kapilevich Jun 2020

Small-X Qcd Calculations With A Biased Ensemble, Gary Kapilevich

Dissertations, Theses, and Capstone Projects

In this dissertation, I will argue that we can study functional fluctuations in unintegrated gluon distributions, in the MV model as well as JIMWLK, using reweighting techniques, which will allow me to calculate QCD observables with "biased ensembles". This technique will enable me to study rare functional configurations of the gluon distributions, that might have been selected for in, for example, the centrality criteria used by the ATLAS and ALICE collaborations. After a review of these techniques, as well as a review of QCD physics at high energy in general, I will use biased ensembles to compute observables in two …


Theoretical Studies Of C And Cp Violation In $\Eta \To \Pi^+ \Pi^- \Pi^0$ Decay, Jun Shi Jan 2020

Theoretical Studies Of C And Cp Violation In $\Eta \To \Pi^+ \Pi^- \Pi^0$ Decay, Jun Shi

Theses and Dissertations--Physics and Astronomy

A violation of mirror symmetry in the $\eta\to\pi^+\pi^-\pi^0$ Dalitz plot has long been recognized as a signal of C and CP violation. In this thesis, we show how the isospin of the underlying C- and CP-violating structures can be reconstructed from their kinematic representation in the Dalitz plot. Our analysis of the most recent experimental data reveals, for the first time, that the C- and CP-violating amplitude with total isospin I = 2 is much more severely suppressed than that with total isospin I = 0.

In searching for C- and CP-violating sources beyond the SM, we enumerate the leading-dimension, …


Tip-Enhanced Nano-Optical Imaging Of Superacid Treated Bilayer Mos2-Ws2 2d Lateral Heterostructures, Amala Dixit Mar 2019

Tip-Enhanced Nano-Optical Imaging Of Superacid Treated Bilayer Mos2-Ws2 2d Lateral Heterostructures, Amala Dixit

USF Tampa Graduate Theses and Dissertations

Nanoscale optical characterization of two-dimensional (2D) materials and heterostructures is important for the design of novel optoelectronic flexible nano-devices. Nano-optical photoluminescence (PL) and Raman imaging of bilayer 2D materials has been a challenging problem due to weak signals. The exciton-dominated light emission of two-dimensional (2D) transition metal dichalcogenide (TMDC) materials is affected by the formation of defects and doping states. Previous studies have shown that chemical treatment modifies the defect and doping states of chemical vapor deposition (CVD)-grown monolayers of MoS2 and WS2, which provides a promising possibility for engineering the optoelectronic properties of these 2D TMDCs. …


Searching For Clean Observables In $B -> D* /Tau- \Bar{\Nu}_{\Tau}$ Decays, Michael D. Williams Jr. Jan 2019

Searching For Clean Observables In $B -> D* /Tau- \Bar{\Nu}_{\Tau}$ Decays, Michael D. Williams Jr.

Theses and Dissertations

In this thesis, the clean angular observables in the $\bar{B} \to D^{*+} \ell^- \bar{\nu}_{\ell}$ angular distribution is studied. Similar angular observables are widely studied in $B \to K^* \mu^+ \mu^-$ decays. We believed that these angular observables may have different sensitivities to different new physics structures.


An Introduction To Supersymmetric Quantum Mechanics, Vincent R. Siggia Jan 2019

An Introduction To Supersymmetric Quantum Mechanics, Vincent R. Siggia

Theses and Dissertations

In this thesis, the general framework of supersymmetric quantum mechanics and the path integral approach will be presented (as well as the worked out example of the supersymmetric harmonic oscillator). Then the theory will be specialized to the case of supersymmetric quantum mechanics on Riemannian manifolds, which will start from a supersymmetric Lagrangian for the general case and the special case for S2. Afterwards, there will be a discussion on the superfield formalism. Concluding this thesis will be the Hamiltonian formalism followed by the inclusion of deforma- tions by potentials.


Singularity Resolution In Anisotropic And Black Hole Spacetimes In Loop Quantum Cosmology, Sahil Saini Dec 2018

Singularity Resolution In Anisotropic And Black Hole Spacetimes In Loop Quantum Cosmology, Sahil Saini

LSU Doctoral Dissertations

Loop quantum cosmology (LQC) has in recent years led to successful resolution of singularities in cosmological models while agreeing with general relativity in low curvature limit. Existence of a bounce and the possibility of an effective continuum description closely approximating the quantum evolution have been notable features of this singularity resolution. The effective spacetimes of loop quantized isotropic and Bianchi-I models have been shown to be geodesically complete and free from strong singularities. In this dissertation, we extend these results to effective loop quantized Bianchi-II, Bianchi-IX and Kantowski--Sachs models with arbitrary minimally coupled matter, and also explore the possibility of …


Prospects For Infrared Quantum Gravity: From Cosmology To Black Holes, Basem K. Mahmoud El-Menoufi Nov 2016

Prospects For Infrared Quantum Gravity: From Cosmology To Black Holes, Basem K. Mahmoud El-Menoufi

Doctoral Dissertations

Although perturbatively non-renormalizable, general relativity is a perfectly valid quantum theory at low energies. Treated as an effective field theory one is able to make genuine quantum predictions by applying the conventional rules of quantum field theory. The low energy degrees of freedom and couplings of quantum gravity are fully dictated by the symmetries of general relativity. To realize the full EFT treatment one has to supplement the theory with experimental input necessary to fix the Wilson coefficients of the most general Lagrangian. In spite of the fact that this is not feasible, one can still extract the leading quantum …


Some 2-Categorical Aspects In Physics, Arthur Parzygnat Sep 2016

Some 2-Categorical Aspects In Physics, Arthur Parzygnat

Dissertations, Theses, and Capstone Projects

2-categories provide a useful transition point between ordinary category theory and infinity-category theory where one can perform concrete computations for applications in physics and at the same time provide rigorous formalism for mathematical structures appearing in physics. We survey three such broad instances. First, we describe two-dimensional algebra as a means of constructing non-abelian parallel transport along surfaces which can be used to describe strings charged under non-abelian gauge groups in string theory. Second, we formalize the notion of convex and cone categories, provide a preliminary categorical definition of entropy, and exhibit several examples. Thirdly, we provide a universal description …


Ultracold Quantum Scattering In The Presence Of Synthetic Spin-Orbit Coupling, Su-Ju Wang Aug 2016

Ultracold Quantum Scattering In The Presence Of Synthetic Spin-Orbit Coupling, Su-Ju Wang

Open Access Dissertations

Two-body scattering constitutes one of the most fundamental processes in various physical systems ranging from ultracold dilute quantum gases to energetic quark- gluon plasmas. In this dissertation, we study the low-energy atomic collision physics in the presence of synthetic gauge fields, which are generated by atom-light interaction. One category of synthetic gauge fields is the artificial spin-orbit coupling. We discuss three different aspects in scattering theory: ultracold collision, scattering resonance, and bound state formation from a few-body perspective when the atomic spin states are coupled with their center-of-mass motion. The understanding of the spin-orbit effects on the modification of the …


Hadron Physics In Tests Of Fundamental Symmetries, Chien Yeah Seng Jul 2016

Hadron Physics In Tests Of Fundamental Symmetries, Chien Yeah Seng

Doctoral Dissertations

Low energy precision tests of fundamental symmetries provide excellent probes for the Beyond Standard Model Physics. Theoretical interpretations of these experiments often involve the application of non-perturbative Quantum Chromodynamics in the study of hadronic matrix elements that may either serve as signals of new physics or Standard Model backgrounds. In this work I present a series of studies on different hadronic matrix elements using various low-energy effective approaches to Quantum Chromodynamics, and discuss the impact of these studies on our knowledge of Standard Model and Beyond Standard Model physics.


Universal Scaling Properties After Quantum Quenches, Damian Andres Galante Mar 2016

Universal Scaling Properties After Quantum Quenches, Damian Andres Galante

Electronic Thesis and Dissertation Repository

In this Thesis, the problem of a quantum quench in quantum field theories is analyzed. This involves studying the real time evolution of observables in a theory that undergoes a change in one of its couplings. These quenches are then characterized by two parameters: $\delta \lambda$, the magnitude of the quench and most importantly, $\delta t$, the quench duration. In contrast to previous studies of abrupt quenches in the condensed matter theory community, we will be interested in smooth quenches with a finite $\delta t$.

Motivated by existing results in holographic theories, we studied the problem of a fast smooth …


Analytic Evolution Of Singular Distribution Amplitudes In Qcd, Asli Tandogan Jul 2014

Analytic Evolution Of Singular Distribution Amplitudes In Qcd, Asli Tandogan

Physics Theses & Dissertations

Distribution amplitudes (DAs) are the basic functions that contain information about the quark momentum. DAs are necessary to describe hard exclusive processes in quantum chromodynamics. We describe a method of analytic evolution of DAs that have singularities such as nonzero values at the end points of the support region, jumps at some points inside the support region and cusps. We illustrate the method by applying it to the evolution of a flat (constant) DA, antisymmetric flat DA, and then use the method for evolution of the two-photon generalized distribution amplitude. Our approach to DA evolution has advantages over the standard …


The Dijet Cross Section Measurement In Proton-Proton Collisions At A Center Of Mass Energy Of 500 Gev At Star, Grant D. Webb Jan 2014

The Dijet Cross Section Measurement In Proton-Proton Collisions At A Center Of Mass Energy Of 500 Gev At Star, Grant D. Webb

Theses and Dissertations--Physics and Astronomy

Polarized deep inelastic scattering experiments play a vital role in the exploration of the spin structure of the proton. The polarized proton-proton collider at RHIC provides direct access to the gluon spin distribution through longitudinal double spin asymmetry measurements of inclusive jets, pions, and dijets. This thesis presents the measurement of the dijet double differential cross-section in proton-proton collisions at center of mass energies of √s = 500 GeV. The data represent an integrated luminosity of 8.7 pb-1 recorded by the STAR detector during the 2009 RHIC run. A comprehensive jet analysis was performed to determine the ideal …


Contributions To The Cuore Collaboration, Samuel Joseph Meijer Jul 2013

Contributions To The Cuore Collaboration, Samuel Joseph Meijer

Physics

This paper describes work done between 2010 and 2013 to contribute to the CUORE collaboration, a physics collaboration searching for neutrinoless double-beta decay in tellurium. Measurement of this decay would indicate fundamental information about the nature of the neutrino. The implementation of a parylene-coated detector frame is described. Also, a temperature stabilization system for an automated gluing system was constructed. An image recognition algorithm is described for locating spots of glue and evaluating their acceptability.


Calculation Of Physical Processes At The Lhc, Usama Adnan Al-Binni Dec 2011

Calculation Of Physical Processes At The Lhc, Usama Adnan Al-Binni

Doctoral Dissertations

With the start of the age of the Large Hadron Collider (LHC) two challenges face theoreticians and computational physicists. The first is about understanding theories beyond the Standard Model and producing verifiable predictions that can be tested against what the LHC and subsequent machines would produce. The second is to improve computational methods so that the new experimental precision is matched by a theoretical one. But this improvement is also crucial for the detection of potential deviations from Standard Model predictions and possibly also finding the elusive Higgs. This work tries to address problems in both areas. In the first …


Generalized Compton Amplitudes In Quantum Chromodynamics, Ignati Grigentch Apr 2000

Generalized Compton Amplitudes In Quantum Chromodynamics, Ignati Grigentch

Physics Theses & Dissertations

In this dissertation we describe results of our studies of generalized Compton amplitudes. We have calculated the one-loop corrections to the amplitude in the coordinate representation in terms of nonlocal string light-ray operators. We have also developed a consistent approach to the problem of constructing the gauge invariant Compton amplitude and obtained an expression for the explicitly gauge invariant amplitude which includes all the generalized target-mass corrections.


Virtual Compton Scattering Processes In Quantum Chromodynamics, Igor V. Musatov Apr 1999

Virtual Compton Scattering Processes In Quantum Chromodynamics, Igor V. Musatov

Physics Theses & Dissertations

Applications of perturbative QCD to deeply virtual Compton scattering and hard exclusive meson electroproduction processes require a generalization of usual Parton distributions for the case when long-distance information is accumulated in nonforward matrix elements [special characters omitted] of quark and gluon light-cone operators. We consider different aspects of the investigation of the virtual Compton amplitude in the QCD on two examples: the spin dependent observables in the forward virtual Compton process (measured in the experiments on deep inelastic scattering) and the γγ* transition form factor. Then we discuss in detail evolution equations for non-forward parton distributions [special characters omitted] The …