Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Quantum Physics

Study Of The Kinetic Energy Densities Of Electrons As Applied To Quantum Dots In A Magnetic Field, Marlina Slamet, Viraht Sahni Oct 2018

Study Of The Kinetic Energy Densities Of Electrons As Applied To Quantum Dots In A Magnetic Field, Marlina Slamet, Viraht Sahni

Publications and Research

There are three expressions for the kinetic energy density t(r) expressed in terms of its quantal source, the single‐particle density matrix: tA(r), the integrand of the kinetic energy expectation value; tB(r), the trace of the kinetic energy tensor; tC(r), a virial form in terms of the 'classical' kinetic field. These kinetic energy densities are studied by application to 'artificial atoms' or quantum dots in a magnetic field in a ground and excited singlet state. A comparison with the densities for natural atoms and molecules in their ground state is made. The near nucleus …


Quantum And Classical Transport Of 2d Electrons In The Presence Of Long And Short Range Disorder, Jesse Kanter Sep 2018

Quantum And Classical Transport Of 2d Electrons In The Presence Of Long And Short Range Disorder, Jesse Kanter

Dissertations, Theses, and Capstone Projects

This work focuses on the study of electron transport of 2-D electron gas systems in relation to both fundamental properties of the systems such as disorder and scattering mechanisms, as well as unique magnetoresistance (MR) effects. A large portion of the discussion is built around the use of an in plane magnetic field to vary the ratio between the Zeeman energy between electrons of different spins and the Landau level spacing, creating a tool to control the quantization of the density of states (DOS).

This tool is first used to isolate Quantum Positive Magnetoresistance (QPMR), which grants insight to the …


Charge State Dynamics And Quantum Sensing With Defects In Diamond, Jacob D. Henshaw Sep 2018

Charge State Dynamics And Quantum Sensing With Defects In Diamond, Jacob D. Henshaw

Dissertations, Theses, and Capstone Projects

In recent years, defect centers in wide band gap semiconductors such as diamond, have received significant attention. Defects offer great utility as single photon emitters, nanoscale sensors, and quantum memories and registers for quantum computation. Critical to the utility of these defects, is their charge state.

In this dissertation, experiments surrounding the charge state dynamics and the carrier dynamics are performed and analyzed. Extensive studies of the ionization and recombination processes of defects in diamond, specifically, the Nitrogen Vacancy (NV) center, have been performed. Diffusion of ionized charge carriers has been imaged indirectly through the recapture of said carriers by …


Kinetic Effects In 2d And 3d Quantum Dots: Comparison Between High And Low Electron Correlation Regimes, Marlina Slamet, Viraht Sahni Aug 2018

Kinetic Effects In 2d And 3d Quantum Dots: Comparison Between High And Low Electron Correlation Regimes, Marlina Slamet, Viraht Sahni

Publications and Research

Kinetic related ground state properties of a two-electron 2D quantum dot in a magnetic field and a 3D quantum dot (Hooke's atom) are compared in the Wigner high (HEC) and low (LEC) electron correlation regimes. The HEC regime corresponds to low densities sufficient for the creation of a Wigner molecule. The LEC regime densities are similar to those of natural atoms and molecules. The results are determined employing exact closed-form analytical solutions of the Schrödinger-Pauli and Schrödinger equations, respectively. The properties studied are the local and nonlocal quantal sources of the density and the single particle density matrix; the kinetic …


Dissipation Effects In Schrödinger And Quantal Density Functional Theories Of Electrons In An Electromagnetic Field, Xiao-Yin Pan, Viraht Sahni Mar 2018

Dissipation Effects In Schrödinger And Quantal Density Functional Theories Of Electrons In An Electromagnetic Field, Xiao-Yin Pan, Viraht Sahni

Publications and Research

Dissipative effects arise in an electronic system when it interacts with a time-dependent environment. Here, the Schrödinger theory of electrons in an electromagnetic field including dissipative effects is described from a new perspective. Dissipation is accounted for via the effective Hamiltonian approach in which the electron mass is time-dependent. The perspective is that of the individual electron: the corresponding equation of motion for the electron or time-dependent differential virial theorem—the ‘Quantal Newtonian’ second law—is derived. According to the law, each electron experiences an external field comprised of a binding electric field, the Lorentz field, and the electromagnetic field. In addition, …