Open Access. Powered by Scholars. Published by Universities.®

Plasma and Beam Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Plasma and Beam Physics

Investigation Of The Chemical Kinetics In An Atmospheric Cold Plasma Towards Co2 Conversion, Daniel Piatek Aug 2020

Investigation Of The Chemical Kinetics In An Atmospheric Cold Plasma Towards Co2 Conversion, Daniel Piatek

Seton Hall University Dissertations and Theses (ETDs)

Hydrogenation of carbon dioxide (CO2) to methanol (CH3OH) is a promising route for utilization of excess and residual CO2. The conversion of CO to methanol is a well-developed process but the ability to use CO2 as a feed gas still requires high pressures (30-300 atm) to attain conversion. In this work, the hydrogenation of CO2 is explored using H2O as well as H2 in an atmospheric pressure nonthermal (cold) plasma created with a dielectric barrier discharge (DBD) reactor. Different gas mixtures such as argon (Ar) and helium (He) are used to understand their interactions in the process of CO2 hydrogenation. …


Characterization Of A Novel Double Cooled Electrode Dbd Reactor For Ozone Generation, Gustavo Duarte Aug 2020

Characterization Of A Novel Double Cooled Electrode Dbd Reactor For Ozone Generation, Gustavo Duarte

Seton Hall University Dissertations and Theses (ETDs)

The Dielectric Barrier Discharge (DBD) is used to generate atmospheric or higher-pressure non-thermal plasmas and has found various commercial applications such as in industrial large-scale ozone generation. Ozone (O3 ) is a powerful chemical reactant that is used to kill bacteria, to deodorize and to perform water purification. The effectiveness of the DBD reactors depends on the electrode arrangements, gap lengths, dielectric materials, operating gases and feed gas quality to name a few. However, the production of O3 is heat sensitive. In order to prevent O3 destruction thermal cooling of the DBD is needed. The industry approach …