Open Access. Powered by Scholars. Published by Universities.®

Plasma and Beam Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Plasma and Beam Physics

Langmuir Probe Instrument Suite For Mesosphere Turbulence Experiment Mission, Adam Blake Dec 2014

Langmuir Probe Instrument Suite For Mesosphere Turbulence Experiment Mission, Adam Blake

Doctoral Dissertations and Master's Theses

The Langmuir probe technique is the predominant in-situ plasma diagnostic technique, and is arguably the only measurement technique that is universally own on every sounding rocket investigation. Earth's mesosphere region (80-120 km) is a host of many dynamic phenomena such as the noctilucent clouds, breaking gravity waves, inversion layers, settlement of mesospheric smoke particles, etc. As such it is critical to have a comprehensive suite of plasma diagnostics that can unambiguously measure various plasma parameters.

This thesis deals with the development and testing of three different Langmuir probe implementations suitable for investigation of the mesosphere which are to be launched …


A Prototype Microwave Cavity Control Circuit For Use In Next Generation Free Electron Laser, Josh Thompson, Peter Neal Barrina, Jiayi Jiang, Joe Frisch, Steve Smith, Daniel Van Winkle Aug 2014

A Prototype Microwave Cavity Control Circuit For Use In Next Generation Free Electron Laser, Josh Thompson, Peter Neal Barrina, Jiayi Jiang, Joe Frisch, Steve Smith, Daniel Van Winkle

STAR Program Research Presentations

One of the current programs at SLAC National Accelerator Laboratory is the Linac Coherent Light Source, or LCLS. Using the existing hardware of the last third of their linear accelerator (or “linac”), SLAC has created one of the most energetic X-ray free electron lasers (or “FEL”). Since 2009, LCLS has used this FEL to perform a wide range of experiments across all sciences, most notably ultrafast filming at the molecular scale. As requests for beam-time with this laser increases, SLAC is purposing a linac upgrade to better match this demand. This upgrade, named LCLS-II, will replace existing copper radio frequency …


A Numerical Assessment Of Cosmic-Ray Energy Diffusion Through Turbulent Media, M. Fatuzzo, F. Melia Jan 2014

A Numerical Assessment Of Cosmic-Ray Energy Diffusion Through Turbulent Media, M. Fatuzzo, F. Melia

Faculty Scholarship

No abstract provided.


Effects Of Turbulence On Cosmic Ray Propagation In Protostars And Young Stars, M. Fatuzzo, F. C. Adams Jan 2014

Effects Of Turbulence On Cosmic Ray Propagation In Protostars And Young Stars, M. Fatuzzo, F. C. Adams

Faculty Scholarship

No abstract provided.


Higher Order Mode Damping In Superconducting Spoke Cavities, C. S. Hopper, J. R. Delayen Jan 2014

Higher Order Mode Damping In Superconducting Spoke Cavities, C. S. Hopper, J. R. Delayen

Physics Faculty Publications

Parasitic higher order modes (HOMs) can be severely detrimental to the performance of superconducting cavities. For this reason, the mode spectrum and beam coupling strength must be examined in detail to determine which modes must be damped. One advantage of the spoke cavity geometry is that couplers can be placed on the outer body of the cavity rather than in the beam line space. We present an overview of the HOM properties of spoke cavities and methods for suppressing the most harmful ones.


Employing Twin Crabbing Cavities To Address Variable Transverse Coupling Of Beams In The Meic, A. Castilla, V. S. Morozov, T. Satogata, J. R. Delayen Jan 2014

Employing Twin Crabbing Cavities To Address Variable Transverse Coupling Of Beams In The Meic, A. Castilla, V. S. Morozov, T. Satogata, J. R. Delayen

Physics Faculty Publications

The design strategy of the Medium Energy Electron-Ion Collider (MEIC) at Jefferson Lab contemplates both matching of the emittance aspect ratios and a 50 mrad crossing angle along with crab crossing scheme for both electron and ion beams over the energy range (√s=20-70 GeV) to achieve high luminosities at the interaction points (IPs). However, the desired locations for placing the crabbing cavities may include regions where the transverse degrees of freedom of the beams are coupled with variable coupling strength that depends on the collider rings’ magnetic elements (solenoids and skew quadrupoles). In this work we explore the feasibility of …


Progress On The Interaction Region Design And Detector Integration At Jlab's Meic, V. S. Morozov, P. Brindza, A. Camsonne, Ya S. Derbenev, R. Ent, D. Gaskell, F. Lin, P. Nadel-Turonski, M. Ungaro, Y. Zhang, C. E. Hyde, K. Park, M. Sullivan, Z. W. Zhao Jan 2014

Progress On The Interaction Region Design And Detector Integration At Jlab's Meic, V. S. Morozov, P. Brindza, A. Camsonne, Ya S. Derbenev, R. Ent, D. Gaskell, F. Lin, P. Nadel-Turonski, M. Ungaro, Y. Zhang, C. E. Hyde, K. Park, M. Sullivan, Z. W. Zhao

Physics Faculty Publications

One of the unique features of JLab's Medium-energy Electron-Ion Collider (MEIC) is a full-acceptance detector with a dedicated, small-angle, high-resolution detection system, capable of covering a wide range of momenta (and charge-to-mass ratios) with respect to the original ion beam to enable access to new physics. We present an interaction region design developed with close integration of the detection and beam dynamical aspects. The dynamical aspect of the design rests on a symmetry-based concept for compensation of non-linear effects. The optics and geometry have been optimized to accommodate the detection requirements and to ensure the interaction region's modularity for ease …


Plasma Processes And Polymers Special Issue On: Plasma And Cancer, Mounir Laroussi, Michael Keidar Jan 2014

Plasma Processes And Polymers Special Issue On: Plasma And Cancer, Mounir Laroussi, Michael Keidar

Electrical & Computer Engineering Faculty Publications

During the last two decades, research efforts on the application of low temperature plasmas in biology and medicine have positioned nonequilibrium lowtemperature plasmas as a technology that has the potential of revolutionizing healthcare.[1,2] Low temperature plasmas can be applied in direct contact with living tissues to inactivate bacteria,[3] to disinfect wounds and accelerate wound healing,[4] and to induce damage in some cancer cells.[5–11]