Open Access. Powered by Scholars. Published by Universities.®

Optics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

2019

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 49

Full-Text Articles in Optics

Interfacial Contact With Noble Metal - Noble Metal And Noble Metal - 2d Semiconductor Nanostructures Enhance Optical Activity, Ricardo Raphael Lopez Romo Dec 2019

Interfacial Contact With Noble Metal - Noble Metal And Noble Metal - 2d Semiconductor Nanostructures Enhance Optical Activity, Ricardo Raphael Lopez Romo

Graduate Theses and Dissertations

Noble metal nanoparticles and two-dimensional (2D) transition metal dichalcogenide (TMD) crystals offer unique optical and electronic properties that include strong exciton binding, spin-orbital coupling, and localized surface plasmon resonance. Controlling these properties at high spatiotemporal resolution can support emerging optoelectronic coupling and enhanced optical features. Excitation dynamics of these optical properties on physicochemically bonded mono- and few-layer TMD crystals with metal nanocrystals and two overlapping spherical metal nanocrystals were examined by concurrently (i) DDA simulations and (ii) far-field optical transmission UV-vis spectroscopic measurements. Initially, a novel and scalable method to unsettle van der Waals bonds in bulk TMDs to prepare …


Integrated Chirped-Grating Spectrometer-On-A-Chip, Shima Nezhadbadeh Nov 2019

Integrated Chirped-Grating Spectrometer-On-A-Chip, Shima Nezhadbadeh

Optical Science and Engineering ETDs

In this dissertation we demonstrate a new structure based on waveguide coupling atop a silicon wafer using a chirped grating to provide the dispersion that leads to a high-resolution, compact, fully integrable and CMOS-compatible spectrometer. Light is both analyzed and detected in a single, completely monolithic component which enables realizing a high-resolution portable spectrometer with an extremely compact footprint. The structure is comprised of a SiO2/Si3N4/SiO2 waveguide on top of a silicon wafer. Grating regions are fabricated on the top cladding of the waveguide. The input light is incident on a chirped grating …


Demonstration Of Visible And Near Infrared Raman Spectrometers And Improved Matched Filter Model For Analysis Of Combined Raman Signals, Alexander Matthew Atkinson Oct 2019

Demonstration Of Visible And Near Infrared Raman Spectrometers And Improved Matched Filter Model For Analysis Of Combined Raman Signals, Alexander Matthew Atkinson

Electrical & Computer Engineering Theses & Dissertations

Raman spectroscopy is a powerful analysis technique that has found applications in fields such as analytical chemistry, planetary sciences, and medical diagnostics. Recent studies have shown that analysis of Raman spectral profiles can be greatly assisted by use of computational models with achievements including high accuracy pure sample classification with imbalanced data sets and detection of ideal sample deviations for pharmaceutical quality control. The adoption of automated methods is a necessary step in streamlining the analysis process as Raman hardware becomes more advanced. Due to limits in the architectures of current machine learning based Raman classification models, transfer from pure …


Digital Holography Efficiency Experiments For Tactical Applications, Douglas E. Thornton Sep 2019

Digital Holography Efficiency Experiments For Tactical Applications, Douglas E. Thornton

Theses and Dissertations

Digital holography (DH) uses coherent detection and offers direct access to the complex-optical field to sense and correct image aberrations in low signal-to-noise environments, which is critical for tactical applications. The performance of DH is compared to a similar, well studied deep-turbulence wavefront sensor, the self-referencing interferometer (SRI), with known efficiency losses. Wave optics simulations with deep-turbulence conditions and noise were conducted and the results show that DH outperforms the SRI by 10's of dB due to DH's strong reference. Additionally, efficiency experiments were conducted to investigate DH system losses. The experimental results show that the mixing efficiency (37%) is …


Near-Field Effects On Partially Coherent Light Scattered By An Aperture, Milo W. Hyde Iv, Michael J. Havrilla Aug 2019

Near-Field Effects On Partially Coherent Light Scattered By An Aperture, Milo W. Hyde Iv, Michael J. Havrilla

Faculty Publications

We investigate how the near field affects partially coherent light scattered from an aperture in an opaque screen. Prior work on this subject has focused on the role of surface plasmons, and how they affect spatial coherence is well documented. Here, we consider other near-field effects that might impact spatial coherence. We do this by examining the statistics of the near-zone field scattered from an aperture in a perfect electric conductor plane—a structure that does not support surface plasmons. We derive the near-field statistics (in particular, cross-spectral density functions) by applying electromagnetic equivalence theorems and the Method of Moments. We …


Polarization Division Multiplexing For Optical Data Communications, Darko Ivanovich Aug 2019

Polarization Division Multiplexing For Optical Data Communications, Darko Ivanovich

McKelvey School of Engineering Theses & Dissertations

Multiple parallel channels are ubiquitous in optical communications, with spatial division multiplexing (separate physical paths) and wavelength division multiplexing (separate optical wavelengths) being the most common forms. In this research work, we investigate the viability of polarization division multiplexing, the separation of distinct parallel optical communication channels through the polarization properties of light. We investigate polarization division multiplexing based optical communication systems in five distinct parts. In the first part of the work, we define a simulation model of two or more linearly polarized optical signals (at different polarization angles) that are transmitted through a common medium (e.g., air), filtered …


Erratum: "Imaging The Three‐Dimensional Orientation And Rotational Mobility Of Fluorescent Emitters Using The Tri‐Spot Point Spread Function", Oumeng Zhang, Jin Lu, Tianben Ding, Matthew D. Lew Aug 2019

Erratum: "Imaging The Three‐Dimensional Orientation And Rotational Mobility Of Fluorescent Emitters Using The Tri‐Spot Point Spread Function", Oumeng Zhang, Jin Lu, Tianben Ding, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

In the original paper, a calibration error exists in the image-formation model used to analyze experimental images taken by our microscope, causing a bias in the orientation measurements in Figs. 2 and 3. The updated measurements are shown in Fig. E1. We have also updated the supplementary material for the original article to discuss the revised PSF model and estimation algorithms (supplementary material 2) and show the revised model and measurements (Figs. S1, S3, S7, S8, and S10–S13).


Polarization Properties Of Airy And Ince-Gaussian Laser Beams, Sean Michael Nomoto Aug 2019

Polarization Properties Of Airy And Ince-Gaussian Laser Beams, Sean Michael Nomoto

Graduate Theses and Dissertations

The description of polarization states of laser light as linear, circular polarization within the paraxial scalar wave approximation is adequate for most applications. However, this description falls short when considering laser light as an electromagnetic wave satisfying Maxwell's equations. An electric field with a constant unit vector for direction of the field and a space dependent complex scalar amplitude in the paraxial wave approximation does not satisfy Maxwell equations which, in general, requires all three Cartesian components of electric and magnetic fields associated for a nonzero laser beam to be nonzero.

Physical observation of passing a linearly polarized laser through …


Growth Of Indium Nitride Quantum Dots By Molecular Beam Epitaxy, Steven P. Minor Aug 2019

Growth Of Indium Nitride Quantum Dots By Molecular Beam Epitaxy, Steven P. Minor

Graduate Theses and Dissertations

Over the last decade, the evolution of the global consciousness in response to decreasing environmental conditions from global warming and pollution has led to an outcry for finding new alternative/clean methods for harvesting energy and determining ways to minimize energy consumption. III-nitride materials are of interest for optoelectronic and electronic device applications such as high efficiency solar cells, solid state lighting (LEDs), and blue laser (Blu-ray Technology) applications. The wide range of direct band gaps covered by its alloys (0.7eV-6.2eV) best illustrates the versatility of III-nitride materials. This wide range has enabled applications extending from the ultraviolet to the near …


3d Plasmonic Design Approach For Efficient Transmissive Huygens Metasurfaces, Bryan M. Adomanis, D. Bruce Burckel, Michael A. Marciniak Jul 2019

3d Plasmonic Design Approach For Efficient Transmissive Huygens Metasurfaces, Bryan M. Adomanis, D. Bruce Burckel, Michael A. Marciniak

Faculty Publications

In this paper we present a design concept for 3D plasmonic scatterers as high- efficiency transmissive metasurface (MS) building blocks. A genetic algorithm (GA) routine partitions the faces of the walls inside an open cavity into a M x N grid of voxels which can be either covered with metal or left bare, and optimizes the distribution of metal coverage needed to generate electric and magnetic modes of equal strength with a targeted phase delay (Φt) at the design wavelength. Even though the electric and magnetic modes can be more complicated than typical low order modes, with their spectral overlap …


The Challenge For Vision Of Fluctuating Real-World Illumination, David H. Foster May 2019

The Challenge For Vision Of Fluctuating Real-World Illumination, David H. Foster

MODVIS Workshop

No abstract provided.


Symmetry And Dopant Diffusion In Inverted Nanopyramid Arrays For Thin Crystalline Silicon Solar Cells, Seok Jun Han May 2019

Symmetry And Dopant Diffusion In Inverted Nanopyramid Arrays For Thin Crystalline Silicon Solar Cells, Seok Jun Han

Chemical and Biological Engineering ETDs

In this dissertation, we enhance the efficiency of thin flexible monocrystalline silicon solar cells by breaking symmetry in light trapping nanostructures and improving homogeneity in dopant concentration profile. These thin cells are potentially less expensive than conventional thick silicon cells by using less silicon material and making the cells more convenient to be handled when supported on polymer films. Moreover, these cells are widely applicable due to their flexibility and lightweight. However, for high efficiencies, these cells require effective light trapping and charge collection. We achieve these in cells based on 14-mm-thick free-standing silicon films with light-trapping arrays of nanopyramidal …


Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu May 2019

Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu

Graduate Theses and Dissertations

Recently, various groups have demonstrated nano-scale engineering of nanostructures for optical to infrared wavelength plasmonic applications. Most fabrication technique processes, especially those using noble metals, requires an adhesion layer. Previously proposed theoretical work to support experimental measurement often neglect the effect of the adhesion layers. The first finding of this work focuses on the impact of the adhesion layer on nanoparticle plasmonic properties. Gold nanodisks with a titanium adhesion layer are investigated by calculating the scattering, absorption, and extinction cross-section with numerical simulations using a finite difference time domain (FDTD) method. I demonstrate that a gold nanodisk with an adhesive …


Optical Response Analysis Of Thz Photoconductive Antenna Using Comsol Multiphysics, Jose Isaac Santos Batista May 2019

Optical Response Analysis Of Thz Photoconductive Antenna Using Comsol Multiphysics, Jose Isaac Santos Batista

Electrical Engineering Undergraduate Honors Theses

A THz photoconductive antenna consists of antenna pads laid over a photoconductive substrate. These types of antennas are excited through the application of an optical pump (laser), which generates carriers inside the semiconductor. The acceleration and recombination of these carriers produce photocurrent that excites the antenna and generates THz pulse. This thesis focuses on analyzing the optical response of a photoconductive antenna, which consist of the interaction of the incident electric field of a laser pump with the radiating device. It develops the amplitude modulation process of a plane wave of light into a laser pump. It also takes into …


Designing Liquid Crystal For Optoacoustic Detection, Michael T. Dela Cruz Mar 2019

Designing Liquid Crystal For Optoacoustic Detection, Michael T. Dela Cruz

Theses and Dissertations

This research impacts the development of a cost-saving, on-chip device that can replace a wide range of costly, bulky sensors for commercial and defense applications. In particular, the goals of this work were to design and test a sensor that uses the optical properties of liquid crystal (LC) to detect acoustic waves. This began with developing a method to fine-tune the optical features of the liquid crystal. Statistical analysis of select experimental variables, or factors, lead to ideal settings of those variables when creating the sensor. A two-factor and three-factor experiment were separately conducted and analyzed as a preliminary demonstration …


A State-Of-The-Art Survey On Deep Learning Theory And Architectures, Md Zahangir Alom, Tarek M. Taha, Christopher Yakopcic, Stefan Westberg, Paheding Sidike, Mst Shamima Nasrin, Mahmudul Hasan, Brian C. Van Essen, Abdul A. S. Awwal, Vijayan K. Asari Mar 2019

A State-Of-The-Art Survey On Deep Learning Theory And Architectures, Md Zahangir Alom, Tarek M. Taha, Christopher Yakopcic, Stefan Westberg, Paheding Sidike, Mst Shamima Nasrin, Mahmudul Hasan, Brian C. Van Essen, Abdul A. S. Awwal, Vijayan K. Asari

Electrical and Computer Engineering Faculty Publications

In recent years, deep learning has garnered tremendous success in a variety of application domains. This new field of machine learning has been growing rapidly and has been applied to most traditional application domains, as well as some new areas that present more opportunities. Different methods have been proposed based on different categories of learning, including supervised, semi-supervised, and un-supervised learning. Experimental results show state-of-the-art performance using deep learning when compared to traditional machine learning approaches in the fields of image processing, computer vision, speech recognition, machine translation, art, medical imaging, medical information processing, robotics and control, bioinformatics, natural language …


Fundamental Limits Of Measuring Single-Molecule Rotational Mobility, Oumeng Zhang, Matthew D. Lew Feb 2019

Fundamental Limits Of Measuring Single-Molecule Rotational Mobility, Oumeng Zhang, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Various methods exist for measuring molecular orientation, thereby providing insight into biochemical activities at nanoscale. Since fluorescence intensity and not electric field is detected, these methods are limited to measuring even-order moments of molecular orientation. However, any measurement noise, for example photon shot noise, will result in nonzero measurements of any of these even-order moments, thereby causing rotationally-free molecules to appear to be partially constrained. Here, we build a model to quantify measurement errors in rotational mobility. Our theoretical framework enables scientists to choose the optimal single-molecule orientation measurement technique for any desired measurement accuracy and photon budget.


High Performance Liquid Crystal Devices For Augmented Reality And Virtual Reality, Md Javed Rouf Talukder Jan 2019

High Performance Liquid Crystal Devices For Augmented Reality And Virtual Reality, Md Javed Rouf Talukder

Electronic Theses and Dissertations

See-through augmented reality and virtual reality displays are emerging due to their widespread applications in education, engineering design, medical, retail, transportation, automotive, aerospace, gaming, and entertainment. For augmented reality and virtual reality displays, high-resolution density, high luminance, fast response time and high ambient contrast ratio are critically needed. High-resolution density helps eliminate the screen-door effect, high luminance and fast response time enable low duty ratio operation, which plays a key role for suppressing image blurs. A dimmer placed in front of AR display helps to control the incident background light, which in turn improves the image contrast. In this dissertation, …


Processing Of Advanced Infrared Materials, Daniel Mcgill Jan 2019

Processing Of Advanced Infrared Materials, Daniel Mcgill

Electronic Theses and Dissertations

Infrared transparent glassy and crystalline materials often have unique and complex processing requirements but are an important class of materials for such applications as optical windows, lenses, waveplates, polarizers and beam splitters. This thesis investigates two specific materials, one amorphous and one crystalline, that are candidates for use in the short and midwave-infrared and mid and longwave infrared, respectively. It is demonstrated that an innovative uniaxial sintering process, which uses a sacrificial pressure-transmitting medium, can be used to fully densify a 70TeO2-20WO3-10La2O3 (TWL) glass powder. The characteristics of the sintered TWL glass is compared to that of a parent glass …


Third-Order Optical Nonlinearity Properties Of Cdcl2-Modifed Ge–Sb–S Chalcogenide Glasses, Xiaosong Lu, Jianhui Li, Lu Yang, Runan Zhang, Yindong Zhang, Jing Ren, Aurelian Catalin Galca, Mihail Secu, Gerald Farrell, Pengfei Wang Jan 2019

Third-Order Optical Nonlinearity Properties Of Cdcl2-Modifed Ge–Sb–S Chalcogenide Glasses, Xiaosong Lu, Jianhui Li, Lu Yang, Runan Zhang, Yindong Zhang, Jing Ren, Aurelian Catalin Galca, Mihail Secu, Gerald Farrell, Pengfei Wang

Articles

We developed a new type of chalcohalide glasses with physicochemical and nonlinear optical properties that are tunable by composition. It is found that more than 60 mol.% CdCl2 heavy metal halide can be dissolved into the ternary Ge–Sb–S system and forming stable glasses. The visible-light transparency range is extended to shorter wavelengths with the addition of CdCl2, which is beneficial for the optical quality control and infra-red (IR) system alignment. The third-order optical nonlinearity (TONL) is studied using the femtosecond Z-scan method. The results show that both the nonlinear refractive index and two photon absorption co-efficient decrease with CdCl2. Benefiting …


A Twelve-Wavelength Thulium-Doped Fibre Laser Based On A Microfibre Coil Resonator Incorporating Black Phosphorus, Shi Li, Yu Yin, Elfed Lewis, Gerald Farrell, Pengfei Wang Jan 2019

A Twelve-Wavelength Thulium-Doped Fibre Laser Based On A Microfibre Coil Resonator Incorporating Black Phosphorus, Shi Li, Yu Yin, Elfed Lewis, Gerald Farrell, Pengfei Wang

Articles

A novel multi-wavelength continuous Thulium-doped fibre laser incorporating a microfibre coil resonator based on black phosphorus (MCR-BP) material has been successfully fabricated and demonstrated. A twelve-wavelength spectrum with 0.54 nm channel spacing has been achieved by simply adjusting the pump source power. A single peak extinction ratio of more than 40 dB was observed. The superior performance of the MCR-BP described in this article compared to conventional MCR based fibre lasers can be attributed the inclusion of the Black Phosphorous Material. The enhanced lasing is primarily due to the twin properties of the MCR-BP device combining a comb-like filter effect …


All Fibre Q-Switched Thulium-Doped Fibre Laser Incorporating Thulium–Holmium Co-Doped Fibre As A Saturable Absorber, Shi Li, Elfed Lewis, Gerald Farrell, Ahmad Haziq Aiman Rosol, A.A. Latiff, Sulaiman Wadi Harun, Bingang Guo, Pengfei Wang Jan 2019

All Fibre Q-Switched Thulium-Doped Fibre Laser Incorporating Thulium–Holmium Co-Doped Fibre As A Saturable Absorber, Shi Li, Elfed Lewis, Gerald Farrell, Ahmad Haziq Aiman Rosol, A.A. Latiff, Sulaiman Wadi Harun, Bingang Guo, Pengfei Wang

Articles

A novel all fibre Q-switched Thulium-doped fibre laser (TDFL) is reported which includes a short length of a Thulium–Holmiumco-doped fibre (THDF) as a saturable absorber. A high repetition rate (27.26 kHz) coupled with a low pulse width (19.06μs) is obtained for single wavelength Q-switched pulse operation at an output wavelength of 1911.5 nm using a pump power of 200 mW. Increasing the pump power from 200 mW to 700 mW results in the repetition rate increasing from 27.26 kHz to 99.67 kHz and the pulse width decreasing from 19.06μs to 920 ns. The centre wavelength of the single Q-switched pulse …


Distribution Of Tm 3+ And Ni 2+ In Chalcogenide Glass Ceramics Containing Ga2s3 Nanocrystals: Influence On Photoluminescence Properties, Xiaosong Lu, Zhiqiang Lai, Jing Ren, Lukas Strizik, Tomas Wagner, Yanqiu Du, Gerald Farrell, Pengfei Wang Jan 2019

Distribution Of Tm 3+ And Ni 2+ In Chalcogenide Glass Ceramics Containing Ga2s3 Nanocrystals: Influence On Photoluminescence Properties, Xiaosong Lu, Zhiqiang Lai, Jing Ren, Lukas Strizik, Tomas Wagner, Yanqiu Du, Gerald Farrell, Pengfei Wang

Articles

The distribution of Tm3+ and Ni2+ ions is unambiguously exhibited in 80GeS2-20Ga2S3 chalcogenide glass ceramics (GCs) containing Ga2S3 nanocrystals (NCs) by using advanced analytical transmission electron microscopy. Distinctively different distribution patterns of Tm3+ and Ni2+ ions are observed in the GCs obtained by controlled crystallization. The distribution of the dopants imposes strong influence on their optical properties which are revealed by absorption and photoluminescence (PL) spectra. Detailed discussions are given of the mechanisms of the crystallization-induced PL enhancement and quenching of the Tm3+ mid-infrared and Ni2+ near-infrared emissions, respectively.


In-Fiber Temperature Sensor Based On Green Up-Conversion Luminescence In An Er3+-Yb3+ Co-Doped Tellurite Glass Microsphere, Meng Zhang, Angzhen Li, Jibo Yu, Xiaosong Lu, Shunbin Wang, Elfed Lewis, Gerald Farrell, Libo Yuan, Pengfei Wang Jan 2019

In-Fiber Temperature Sensor Based On Green Up-Conversion Luminescence In An Er3+-Yb3+ Co-Doped Tellurite Glass Microsphere, Meng Zhang, Angzhen Li, Jibo Yu, Xiaosong Lu, Shunbin Wang, Elfed Lewis, Gerald Farrell, Libo Yuan, Pengfei Wang

Articles

A novel, to the best of our knowledge, in-fiber temperature sensor based on green up-conversion (UC) luminescence in an Er3+-Yb3+" role="presentation" style="box-sizing: border-box; display: inline; font-size: 12.88px; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">Er3+-Yb3+Er3+-Yb3+ co-doped tellurite glass microsphere is described. The tellurite glass microsphere is located firmly inside a suspended tri-core hollow-fiber (STCHF) structure. The pump light launched via a single-mode fiber (SMF) is passed through a section of multimode fiber, which is fusion spliced between the SMF …


Ultrabroadband Mid-Infrared Emission From Cr 2+ -Doped Infrared Transparent Chalcogenide Glass Ceramics Embedded With Thermally Grown Zns Nanorods, Xiaosong Lu, Zhiqiang Lai, Runan Zhang, Haitao Guo, Jing Ren, Lukas Strizik, Tomas Wagner, Gerald Farrell, Pengfei Wang Jan 2019

Ultrabroadband Mid-Infrared Emission From Cr 2+ -Doped Infrared Transparent Chalcogenide Glass Ceramics Embedded With Thermally Grown Zns Nanorods, Xiaosong Lu, Zhiqiang Lai, Runan Zhang, Haitao Guo, Jing Ren, Lukas Strizik, Tomas Wagner, Gerald Farrell, Pengfei Wang

Articles

We report, for the first time to our knowledge, an ultrabroadband mid-infrared (MIR) emission in the range of 1800–2800 nm at room temperature from a Cr2+-doped chalcogenide glass ceramic embedded with pure hexagonal (wurtzite) β-ZnS nanorods and study the emission-dependent properties on the doping concentration of Cr2+. A new family of chalcogenide glasses based on (100 − x) Ge1.5As2S6.5 – x ZnSe (in mol.%) was prepared by melt-quenching method. The Cr2+: β-ZnS nanorods of ˜150 nm in diameter and ˜1 μm in length were grown in the Cr2+-doped glass after thermal annealing. The compositional variations of glass structures and optical …


Mode Transition In Conventional Step-Index Optical Fibers, Xiaokang Lian, Gerald Farrell, Qiang Wu, Wei Han, Fangfang Wei, Yuliya Semenova Jan 2019

Mode Transition In Conventional Step-Index Optical Fibers, Xiaokang Lian, Gerald Farrell, Qiang Wu, Wei Han, Fangfang Wei, Yuliya Semenova

Conference Papers

The discrete self-imaging effect reveals the distinct properties of cladding modes with core modes in step-index optical fibers, as was shown in our previous work [1], where only the linearly polarized LP0n modes were studied. In this paper, the dispersion diagram of the first 17 vector modes (TE0n, TM0n, HEmn and EHmn) and the related first 9 LPmn modes are calculated by both the full-vector finite element method and the graphical method with a three-layer step-index optical fiber model. The cladding modes distributions and the transitions between the core and cladding modes are analyzed. The results of this work are …


Sensing Of Multiple Parameters With Whispering Gallery Mode Optical Fiber Micro-Resonators, Arun Kumar Mallik Dr, Vishnan Kavungal, Gerald Farrell, Yuliya Semenova Jan 2019

Sensing Of Multiple Parameters With Whispering Gallery Mode Optical Fiber Micro-Resonators, Arun Kumar Mallik Dr, Vishnan Kavungal, Gerald Farrell, Yuliya Semenova

Conference Papers

Monitoring of multiple physical parameters, such as humidity, temperature, strain, concentrations of certain chemicals or gases in various environments is of great importance in many industrial applications both for minimizing adverse effects on human health as well as for maintaining production levels and quality of products. In this paper we demonstrate two different approaches to the design of multi-parametric sensors using coupled whispering gallery mode (WGM) optical fiber micro-resonators. In the first approach, a small array of micro-resonators is coupled to a single fiber taper, while in the second approach each of the micro-resonators within an array is coupled to …


Theoretical Analysis Of A Volume Holographic Lens Using Matlab, Sanjay Keshri, Kevin Murphy, Izabela Naydenova, Suzanne Martin Jan 2019

Theoretical Analysis Of A Volume Holographic Lens Using Matlab, Sanjay Keshri, Kevin Murphy, Izabela Naydenova, Suzanne Martin

Conference Papers

Volume holographic lenses have great potential for different types of applications requiring light redirection and beam shaping such as solar light collection and LED light management. For lighting applications using LEDs, it is essential to make a highly efficient optical element to be placed in front of the LED in order to decrease energy losses. For that reason, a careful theoretical analysis of the properties and operation regime of the lens must be carried out at the design stage. The characteristics of focusing Holographic Optical Elements (HOE) depend on many factors including their thickness, spatial frequency, the angular range of …


Holographic Optical Elements For Visible Light Applications In Photo-Thermo-Refractive Glass, Fedor Kompan Jan 2019

Holographic Optical Elements For Visible Light Applications In Photo-Thermo-Refractive Glass, Fedor Kompan

Electronic Theses and Dissertations

This dissertation reports on design and fabrication of various optical elements in Photo-thermo-refractive (PTR) glass. An ability to produce complex holographic optical elements (HOEs) for the visible spectral region appears very beneficial for variety of applications, however, it is limited due to photosensitivity of the glass confined within the UV region. First two parts of this dissertation present two independent approaches to the problem of holographic recording using visible radiation. The first method involves modification of the original PTR glass rendering it photosensitive to radiation in the visible spectral region and, thus, making possible the recording of holograms in PTR …


Imaging Through Glass-Air Anderson Localizing Optical Fiber, Jian Zhao Jan 2019

Imaging Through Glass-Air Anderson Localizing Optical Fiber, Jian Zhao

Electronic Theses and Dissertations

The fiber-optic imaging system enables imaging deeply into hollow tissue tracts or organs of biological objects in a minimally invasive way, which are inaccessible to conventional microscopy. It is the key technology to visualize biological objects in biomedical research and clinical applications. The fiber-optic imaging system should be able to deliver a high-quality image to resolve the details of cell morphology in vivo and in real time with a miniaturized imaging unit. It also has to be insensitive to environmental perturbations, such as mechanical bending or temperature variations. Besides, both coherent and incoherent light sources should be compatible with the …