Open Access. Powered by Scholars. Published by Universities.®

Optics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Optics

Electrohydrodynamic Enhancement Of Heat Transfer And Mass Transport In Gaseous Media, Bulk Dielectric Liquids And Dielectric Thin Liquid Films, Seyed Reza Mahmoudi May 2012

Electrohydrodynamic Enhancement Of Heat Transfer And Mass Transport In Gaseous Media, Bulk Dielectric Liquids And Dielectric Thin Liquid Films, Seyed Reza Mahmoudi

Electronic Thesis and Dissertation Repository

Controlling transport phenomena in liquid and gaseous media through electrostatic forces has brought new important scientific and industrial applications. Although numerous EHD applications have been explored and extensively studied so far, the fast-growing technologies, mainly in the semiconductor industry, introduce new challenges and demands. These challenges require enhancement of heat transfer and mass transport in small scales (sometimes in molecular scales) to remove highly concentrated heat fluxes from reduced size devices. Electric field induced flows, or electrohydrodynamics (EHD), have shown promise in both macro and micro-scale devices.

Several existing problems in EHD heat transfer enhancements were investigated in this thesis. …


Rational Design And Advanced Fabrication Of Metallic Nanostructures For Surface-Enhanced Raman Spectroscopy, Betty Cristina Galarreta Aug 2011

Rational Design And Advanced Fabrication Of Metallic Nanostructures For Surface-Enhanced Raman Spectroscopy, Betty Cristina Galarreta

Electronic Thesis and Dissertation Repository

One of the main challenges in analytical science and technology is to develop devices that provide unambiguously the chemical nature of the material of interest with the minimum intrusiveness, the smallest amount of analyte, and the shortest acquisition time. Among the promising methods for such purpose, optical spectroscopy such as surface-enhanced Raman scattering is considered a suitable option. This spectroscopic technique takes advantage of the interaction between an optical field and metallic nanostructures to magnify the electromagnetic field in the vicinity of the nanostructure, resulting in an amplified signal of the vibrational fingerprints of the adsorbed molecules onto the metallic …