Open Access. Powered by Scholars. Published by Universities.®

Optics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Optics

Theoretical Modeling Of The Effect Of Polymer Chain Immobilization Rates On Holographic Recording In Photopolymers, Dana Mackey, Paul O'Reilly, Izabela Naydenova Apr 2016

Theoretical Modeling Of The Effect Of Polymer Chain Immobilization Rates On Holographic Recording In Photopolymers, Dana Mackey, Paul O'Reilly, Izabela Naydenova

Articles

This paper introduces an improved mathematical model for holographic grating formation in an acrylamide-based photopolymer, which consists of partial differential equations derived from physical laws. The model is based on the two-way diffusion theory of \cite{izabela}, which assumes short polymer chains are free to diffuse, and generalizes a similar model presented in \cite{josab} by introducing an immobilization rate governed by chain growth and cross-linking. Numerical simulations were carried out in order to investigate the behaviour of the photopolymer system for short and long exposures, with particular emphasis on the effect of recording parameters (such as illumination frequency and intensity), as …


Evaluation Of Ray-Path Integrals In Geometrical Optics, John A. Adam, Michael Pohrivchak Jan 2016

Evaluation Of Ray-Path Integrals In Geometrical Optics, John A. Adam, Michael Pohrivchak

Mathematics & Statistics Faculty Publications

A brief summary of the physical context to this paper is provided, and the deviation angle undergone by an incident ray after k internal reflections inside a transparent unit sphere is formulated. For radially inhomogeneous spheres (in particular) this angle is related to a ray-path integral; an improper integral for which there are relatively few known exact analytical forms, even for simple refractive index profiles n(r). Thus for a linear profile the integral is a combination of incomplete elliptic integrals of the first and third kinds (though not all are as complicated as this). The ray-path integral is evaluated …