Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering Physics

Passively Estimating Index Of Refraction For Specular Reflectors Using Polarimetric Hyperspectral Imaging, Jacob A. Martin Dec 2016

Passively Estimating Index Of Refraction For Specular Reflectors Using Polarimetric Hyperspectral Imaging, Jacob A. Martin

Theses and Dissertations

As off-nadir viewing platforms becoming increasingly prevalent in remote sensing, material classification and ID techniques robust to changing viewing geometries must be developed. Traditionally, either reflectivity or emissivity are used for classification, but these quantities vary with viewing angle. Instead, estimating index of refraction may be advantageous as it is invariant with respect to viewing geometry. This work focuses on estimating index of refraction from LWIR (875-1250 wavenumbers) polarimetric hyperspectral radiance measurements.


Evaluation Of Hydrothermally Synthesized Uranium Dioxide For Novel Semiconductor Applications, Christopher M. Young Sep 2016

Evaluation Of Hydrothermally Synthesized Uranium Dioxide For Novel Semiconductor Applications, Christopher M. Young

Theses and Dissertations

Neutron radiation detection is an important part of the national strategy for nonproliferation efforts worldwide. Key to the success of these programs is detector material development which establishes the limits of efficiency, sensitivity, and power usage for a detector of practical use. This research focused upon the study of neutron detection using single crystal actinide compounds, specifically UO2, taking advantage of the successful hydrothermal synthesis of UO2 at the Air Force Research Laboratories. Initial indications are that this material may be of sufficient quality for semiconductor application.


Capturing Atmospheric Effects On 3-D Millimeter Wave Radar Propagation Patterns, Richard D. Cook Mar 2016

Capturing Atmospheric Effects On 3-D Millimeter Wave Radar Propagation Patterns, Richard D. Cook

Theses and Dissertations

The need to model millimeter wave (MMW) radar propagation is imperative to proper design of aeronautical, civil, and military systems. Traditional radar propagation modeling is done using a path transmittance with little to no input for weather and atmospheric conditions. As radar advances into the MMW regime, atmospheric effects, such as attenuation and refraction, become more pronounced than at traditional radar wavelengths. The DoD High Energy Laser Joint Technology Offices High Energy Laser End-to-End Operational Simulation (HELEEOS), in combination with the Laser Environmental Effects Definition and Reference (LEEDR) code, is a powerful tool for simulating laser propagation and effects tied …


Fabricating Superhydrophobic And Superoleophobic Surfaces With Multiscale Roughness Using Airbrush And Electrospray, Karam N. Almilaji Jan 2016

Fabricating Superhydrophobic And Superoleophobic Surfaces With Multiscale Roughness Using Airbrush And Electrospray, Karam N. Almilaji

Theses and Dissertations

Examples of superhydrophobic surfaces found in nature such as self-cleaning property of lotus leaf and walking on water ability of water strider have led to an extensive investigation in this area over the past few decades. When a water droplet rests on a textured surface, it may either form a liquid-solid-vapor composite interface by which the liquid droplet partially sits on air pockets or it may wet the surface in which the water replaces the trapped air depending on the surface roughness and the surface chemistry. Super water repellent surfaces have numerous applications in our daily life such as drag …


Understanding And Design Of An Arduino-Based Pid Controller, Dinesh Bista Jan 2016

Understanding And Design Of An Arduino-Based Pid Controller, Dinesh Bista

Theses and Dissertations

This thesis presents research and design of a Proportional, Integral, and Derivative (PID) controller that uses a microcontroller (Arduino) platform. The research part discusses the structure of a PID algorithm with some motivating work already performed with the Arduino-based PID controller from various fields. An inexpensive Arduino-based PID controller designed in the laboratory to control the temperature, consists of hardware parts: Arduino UNO, thermoelectric cooler, and electronic components while the software portion includes C/C++ programming. The PID parameters for a particular controller are found manually. The role of different PID parameters is discussed with the subsequent comparison between different modes …


Beyond Conventional C-Plane Gan-Based Light Emitting Diodes: A Systematic Exploration Of Leds On Semi-Polar Orientations, Morteza Monavarian Jan 2016

Beyond Conventional C-Plane Gan-Based Light Emitting Diodes: A Systematic Exploration Of Leds On Semi-Polar Orientations, Morteza Monavarian

Theses and Dissertations

Despite enormous efforts and investments, the efficiency of InGaN-based green and yellow-green light emitters remains relatively low, and that limits progress in developing full color display, laser diodes, and bright light sources for general lighting. The low efficiency of light emitting devices in the green-to-yellow spectral range, also known as the “Green Gap”, is considered a global concern in the LED industry. The polar c-plane orientation of GaN, which is the mainstay in the LED industry, suffers from polarization-induced separation of electrons and hole wavefunctions (also known as the “quantum confined Stark effect”) and low indium incorporation efficiency that …