Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering Physics

Temporary Bonding With Polydimethylglutarimide Based Lift Off Resist As A Layer Transfer Platform, T. Matsumae, A. D. Koehler, J. D. Greenlee, T. J. Anderson, H. Baumgart, G. G. Jernigan, K. D. Hobart, F. J. Kub Jan 2015

Temporary Bonding With Polydimethylglutarimide Based Lift Off Resist As A Layer Transfer Platform, T. Matsumae, A. D. Koehler, J. D. Greenlee, T. J. Anderson, H. Baumgart, G. G. Jernigan, K. D. Hobart, F. J. Kub

Electrical & Computer Engineering Faculty Publications

Bonding of lift off resist (LOR) was performed to realize temporary wafer bonding without residue. Bonding process conditions such as spin speed, pre-bake temperature, and bonding temperature were optimized to obtain a large bonded area with high bond strength. Under optimized process conditions, a bonded area covering over 98% of the wafer surface, with a room temperature bond strength of nearly 5 J/m2 is achieved. During razor blade testing, fracture often occurs at the Si wafer. Moreover, debonding using an N-Methyl-2-pyrrolidone (NMP)-based solvent left the wafer surface extremely small amount of residue. Thus, the optimized bonding processed developed in …


Cuin1-Xalxse2 Thin Films And Solar Cells, P. D. Paulson, M. W. Haimbodi, S. Marsillac, R. W. Birkmire, W. N. Shafarman Jun 2002

Cuin1-Xalxse2 Thin Films And Solar Cells, P. D. Paulson, M. W. Haimbodi, S. Marsillac, R. W. Birkmire, W. N. Shafarman

Electrical & Computer Engineering Faculty Publications

CuIn[sub 1-x]Al[sub x]Se[sub 2] thin films are investigated for their application as the absorber layer material for high efficiency solar cells. Single-phase CuIn[sub 1-x]Al[sub x]Se[sub 2] films were deposited by four source elemental evaporation with a composition range of 0≤x≤0.6. All these films demonstrate a normalized subband gap transmission >85% with 2 µm film thickness. Band gaps obtained from spectroscopic ellipsometry show an increase with the Al content in the CuIn[sub 1-x]Al[sub x]Se[sub 2] film with a bowing parameter of 0.62. The structural properties investigated using x-ray diffraction measurements show a decrease in lattice spacing as the Al content increases. …


High-Efficiency Solar Cells Based On Cu(Inal)Se[Sub 2] Thin Films, S. Marsillac, P. D. Paulson, M. W. Haimbodi, R. W. Birkmire, W. N. Shafarman Jan 2002

High-Efficiency Solar Cells Based On Cu(Inal)Se[Sub 2] Thin Films, S. Marsillac, P. D. Paulson, M. W. Haimbodi, R. W. Birkmire, W. N. Shafarman

Electrical & Computer Engineering Faculty Publications

A Cu(InAl)Se2solar cell with 16.9% efficiency is demonstrated using a Cu(InAl)Se2thin film deposited by four-source elemental evaporation and a device structure of glass/Mo/Cu(InAl)Se2/CdS/ZnO/indium tin oxide/(Ni/Algrid)/MgF2. A key to high efficiency is improved adhesion between the Cu(InAl)Se2 and the Mo back contact layer, provided by a 5-nm-thick Ga interlayer, which enabled the Cu(InAl)Se2 to be deposited at a 530 °C substrate temperature. Film and device properties are compared to Cu(InGa)Se2 with the same band gap of 1.16 eV. The solar cells have similar behavior, with performance limited by recombination through …