Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics

2020

Articles 1 - 25 of 25

Full-Text Articles in Engineering Physics

Ultrafast Spin-Currents And Charge Conversion At 3d-5d Interfaces Probed By Time-Domain Terahertz Spectroscopy, T. H. Dang, J. Hawecker, E. Rongione, G. Baez Flores, D. Q. To, J. C. Rojas-Sanchez, H. Nong, J. Mangeney, J. Tignon, F. Godel, S. Collin, P. Seneor, M. Bibes, A. Fert, M. Anane, J. M. George, L. Vila, M. Cosset-Cheneau, D. Dolfi, R. Lebrun, P. Bortolotti, Kirill Belashchenko, S. Dhillon, H. Jaffrès Dec 2020

Ultrafast Spin-Currents And Charge Conversion At 3d-5d Interfaces Probed By Time-Domain Terahertz Spectroscopy, T. H. Dang, J. Hawecker, E. Rongione, G. Baez Flores, D. Q. To, J. C. Rojas-Sanchez, H. Nong, J. Mangeney, J. Tignon, F. Godel, S. Collin, P. Seneor, M. Bibes, A. Fert, M. Anane, J. M. George, L. Vila, M. Cosset-Cheneau, D. Dolfi, R. Lebrun, P. Bortolotti, Kirill Belashchenko, S. Dhillon, H. Jaffrès

Kirill Belashchenko Publications

Spintronic structures are extensively investigated for their spin-orbit torque properties, required for magnetic commutation functionalities. Current progress in these materials is dependent on the interface engineering for the optimization of spin transmission. Here, we advance the analysis of ultrafast spin-charge conversion phenomena at ferromagnetic-Transition metal interfaces due to their inverse spin-Hall effect properties. In particular, the intrinsic inverse spin-Hall effect of Pt-based systems and extrinsic inverse spin-Hall effect of Au:W and Au:Ta in NiFe/Au:(W,Ta) bilayers are investigated. The spin-charge conversion is probed by complementary techniques-ultrafast THz time-domain spectroscopy in the dynamic regime for THz pulse emission and ferromagnetic resonance spin-pumping …


The Importance Of Frontier Orbital Symmetry In The Adsorption Of Diiodobenzene On Mos2(0001), Prescott E. Evans, Zahra Hooshmand, Talat S. Rahman, Peter Dowben Dec 2020

The Importance Of Frontier Orbital Symmetry In The Adsorption Of Diiodobenzene On Mos2(0001), Prescott E. Evans, Zahra Hooshmand, Talat S. Rahman, Peter Dowben

Peter Dowben Publications

Evidence of a role of frontier orbital symmetry, in the adsorption process of diiodobenzene on MoS2(0001), appears in the huge differences in the rate of adsorption between 1,3-diiodobenzene, 1,2-diiodobenzene and 1,4-diiodobenzene isomers on MoS2. Experiments indicate that the rate of adsorption of 1,3-diiodobenzene on MoS2(0001) is much greater than that of the 1,2-diodobenzene and 1,4-diiodbenzene isomers. As the differences in calculated diiodobenzene isomer-MoS2 system adsorption energies and electron affinities are negligible, frontier orbital symmetry appears to play a significant role in diiodobenzene adsorption on MoS2(0001). The experimental and theory results, in combination, suggest …


Proximity-Induced Magnetization In Graphene: Towards Efficient Spin Gating, Mihovil Bosnar, Ivor Lončarić, P. Lazić, Kirill Belashchenko, Igor Žutić Nov 2020

Proximity-Induced Magnetization In Graphene: Towards Efficient Spin Gating, Mihovil Bosnar, Ivor Lončarić, P. Lazić, Kirill Belashchenko, Igor Žutić

Kirill Belashchenko Publications

Gate-tunable spin-dependent properties could be induced in graphene at room temperature through the magnetic proximity effect by placing it in contact with a metallic ferromagnet. Because strong chemical bonding with the metallic substrate makes gating ineffective, an intervening passivation layer is needed. Previously considered passivation layers result in a large shift of the Dirac point away from the Fermi level, so that unrealistically large gate fields are required to tune the spin polarization in graphene (Gr). We show that a monolayer of Au or Pt used as the passivation layer between Co and graphene brings the Dirac point closer to …


Detection Of Uncompensated Magnetization At The Interface Of An Epitaxial Antiferromagnetic Insulator, Pavel N. Lapa, Min Han Lee, Igor V. Roshchin, Kirill Belashchenko, Ivan K. Schuller Nov 2020

Detection Of Uncompensated Magnetization At The Interface Of An Epitaxial Antiferromagnetic Insulator, Pavel N. Lapa, Min Han Lee, Igor V. Roshchin, Kirill Belashchenko, Ivan K. Schuller

Kirill Belashchenko Publications

We have probed directly the temperature and magnetic field dependence of pinned uncompensated magnetization at the interface of antiferromagnetic FeF2 with Cu, using FeF2-Cu-Co spin valves. Electrons polarized by the Co layer are scattered by the pinned uncompensated moments at the FeF2-Cu interface giving rise to giant magnetoresistance. We determined the direction and magnitude of the pinned uncompensated magnetization at different magnetic fields and temperatures using the angular dependencies of resistance. The strong FeF2 anisotropy pins the uncompensated magnetization along the easy axis independent of the cooling field orientation. Most interestingly, magnetic fields as …


Reinvestigation Of The Intrinsic Magnetic Properties Of (Fe1-Xcox)2b Alloys And Crystallization Behavior Of Ribbons, Tej Nath Lamichhane, Olena Palasyuk, Vladimir P. Antropov, Ivan A. Zhuravlev, Kirill Belashchenko, Ikenna C. Nlebedim, Kevin W. Dennis, Anton Jesche, Matthew J. Kramer, Sergey L. Bud'ko, R. William Mccallum, Paul C. Canfield, Valentin Taufour Nov 2020

Reinvestigation Of The Intrinsic Magnetic Properties Of (Fe1-Xcox)2b Alloys And Crystallization Behavior Of Ribbons, Tej Nath Lamichhane, Olena Palasyuk, Vladimir P. Antropov, Ivan A. Zhuravlev, Kirill Belashchenko, Ikenna C. Nlebedim, Kevin W. Dennis, Anton Jesche, Matthew J. Kramer, Sergey L. Bud'ko, R. William Mccallum, Paul C. Canfield, Valentin Taufour

Kirill Belashchenko Publications

New determination of the magnetic anisotropy from single crystals of (Fe1-xCox)2B alloys are presented. The anomalous temperature dependence of the anisotropy constant is discussed using the standard Callen-Callen theory, which is shown to be insufficient to explain the experimental results. A more material specific study using first-principles calculations with disordered moments approach gives a much more consistent interpretation of the experimental data. Since the intrinsic properties of the alloys with x=0.3-0.35 are promising for permanent magnets applications, initial investigation of the extrinsic properties are described, in particular the crystallization of melt spun ribbons with Cu, Al, …


Indium Segregation To The Selvedge Of In4Se3 (001), Archit Dhingra, Zoe G. Marzouk, Esha Mishra, Pavlo V. Galiy, Taras M. Nenchuk, Peter Dowben Sep 2020

Indium Segregation To The Selvedge Of In4Se3 (001), Archit Dhingra, Zoe G. Marzouk, Esha Mishra, Pavlo V. Galiy, Taras M. Nenchuk, Peter Dowben

Peter Dowben Publications

Thermal motion of the surface atoms will lead to a decrease in photoemission intensity, while surface segregation may result in an increase of some phostoemission intensities. For In4Se3(001), both effects are seen. The Debye–Waller factor plot, based on the temperature dependent X-ray photoemission spectroscopy (XPS) measurements on In4Se3(001), suggests an upper bound of 203 ± 6 K for the effective Debye temperature, based on the surface component of the In 3d5/2 core-level. Indium is found to segregate to selvedge (subsurface region) of the crystal.


Emulating Condensed Matter Systems In Classical Wave Metamaterials, Matthew Weiner Sep 2020

Emulating Condensed Matter Systems In Classical Wave Metamaterials, Matthew Weiner

Dissertations, Theses, and Capstone Projects

One of the best tools we have for the edification of physics is the analogy. When we take our classical set of states and dynamical variables in phase space and treat them as vectors and Hermitian operators respectively in Hilbert space through the canonical quantization, we lose out on a lot of the intuition developed with the previous classical physics. With classical physics, through our own experiences and understanding of how systems should behave, we create easy-to-understand analogies: we compare the Bohr model of the atom to the motion of the planets, we compare electrical circuits to the flow of …


Electron Emission And Transport Properties Database For Spacecraft Charging Models, Phil Lundgreen Aug 2020

Electron Emission And Transport Properties Database For Spacecraft Charging Models, Phil Lundgreen

Theses and Dissertations

Modeling the rate and likelihood of spacecraft charging during spacecraft mission is critical to determine mission length, proposed spacec­raft attitude, and spacecraft design. The focus of this work is the creation and utilization of a database of secondary electron yield (SEY) measurements for a host of materials to increase accuracy in spacecraft modeling. Traditional methods of SEY data selection for input into spacecraft charging codes typically include the use of compiled materials databases incorporated in charging codes or selecting values from a specific scientific study. The SEY database allows users to select data inputs based upon the details associated with …


An Expanded Model Of Unmatter From Neutrosophic Logic Perspective: Towards Matter-Spirit Unity View, Florentin Smarandache, Victor Christianto, Robert Neil Boyd Aug 2020

An Expanded Model Of Unmatter From Neutrosophic Logic Perspective: Towards Matter-Spirit Unity View, Florentin Smarandache, Victor Christianto, Robert Neil Boyd

Branch Mathematics and Statistics Faculty and Staff Publications

In Neutrosophic Logic, a basic assertion is that there are variations of about everything that we can measure; the variations surround three parameters called T, I, F (truth, indeterminacy, falsehood) which can take a range of values. A previous paper in IJNS, 2020 shortly reviews the links among aether and matter creation from the perspective of Neutrosophic Logic. In any case, matter creation process in nature stays a major puzzle for physicists, scientists and other science analysts. To this issue neutrosophic logic offers an answer: "unmatter." This paper examines an extended model of unmatter, to incorporate issue soul solidarity. So, …


Site Selective Adsorption Of The Spin Crossover Complex Fe(Phen)2(Ncs)2 On Au(111), Sumit Beniwal, Suchetana Sarkar, Felix Baier, Birgit Weber, Peter Dowben, Axel Enders Jul 2020

Site Selective Adsorption Of The Spin Crossover Complex Fe(Phen)2(Ncs)2 On Au(111), Sumit Beniwal, Suchetana Sarkar, Felix Baier, Birgit Weber, Peter Dowben, Axel Enders

Peter Dowben Publications

The iron(II) spin crossover complex Fe(1,10-phenanthroline)2(NCS)2, dubbed Fe-phen, has been studied with scanning tunneling microscopy, after adsorption on the 'herringbone' reconstructed surface of Au(111) for sub-monolayer coverages. The Fe-phen molecules attach, through their NCS-groups, to the Au atoms of the fcc domains of the reconstructed surface only, thereby lifting the herringbone reconstruction. The molecules stack to form 1D chains, which run along the Au[110] directions. Neighboring Fe-phen molecules are separated by approximately 2.65 nm, corresponding to 9 atomic spacings in this direction. The molecular axis, defined by the two phenanthroline groups, is aligned perpendicular to the …


Surface Termination And Schottky-Barrier Formation Of In4Se3(001), Archit Dhingra, Pavlo V. Galiy, Lu Wang, Nataliia S. Vorobeva, Alexey Lipatov, Angel Torres, Taras M. Nenchuk, Simeon J. Gilbert, Alexander Sinitskii, Andrew J. Yost, Wai-Ning Mei, Keisuke Fukutani, Jia Shiang Chen, Peter Dowben Jun 2020

Surface Termination And Schottky-Barrier Formation Of In4Se3(001), Archit Dhingra, Pavlo V. Galiy, Lu Wang, Nataliia S. Vorobeva, Alexey Lipatov, Angel Torres, Taras M. Nenchuk, Simeon J. Gilbert, Alexander Sinitskii, Andrew J. Yost, Wai-Ning Mei, Keisuke Fukutani, Jia Shiang Chen, Peter Dowben

Peter Dowben Publications

The surface termination of In4Se3(001) and the interface of this layered trichalcogenide, with Au, was examined using x-ray photoemission spectroscopy. Low energy electron diffraction indicates that the surface is highly crystalline, but suggests an absence of C2v mirror plane symmetry. The surface termination of the In4Se3(001 is found, by angle-resolved x-ray photoemission spectroscopy, to be In, which is consistent with the observed Schottky barrier formation found with this n-type semiconductor. Transistor measurements confirm earlier results from photoemission, suggesting that In4Se3(001 is an n-type semiconductor, so that Schottky barrier …


Investigation Of Mnxni1-Xo Thin Films Using Pulsed Laser Deposition, Md Ashif Anwar May 2020

Investigation Of Mnxni1-Xo Thin Films Using Pulsed Laser Deposition, Md Ashif Anwar

MSU Graduate Theses

The exchange bias (EB) effect, especially in nanomaterials, is highly promising for use in antiferromagnet-based spintronics applications. NiO is a well known antiferromagnetic material with a high Néel temperature (525K) and can exhibit ferromagnetism/ ferrimagnetism by adding other magnetic transition elements. Our previous work has shown that the antiferromagnetic characteristics of conventional NiO insulating nanostructured material can be altered to have substantial ferrimagnetic characteristics by doping NiO with Mn or Co. Pulsed laser deposition (PLD) was used to grow heterostructures comprised of a nanostructured thin NiO film deposited on the surface of a MgO (100) and Al2O3 …


Questaal: A Package Of Electronic Structure Methods Based On The Linear Muffin-Tin Orbital Technique, Dimitar Pashov, Swagata Acharya, Walter R.L. Lambrecht, Jerome Jackson, Kirill Belashchenko, Athanasios Chantis, Francois Jamet, Mark Van Schilfgaarde Apr 2020

Questaal: A Package Of Electronic Structure Methods Based On The Linear Muffin-Tin Orbital Technique, Dimitar Pashov, Swagata Acharya, Walter R.L. Lambrecht, Jerome Jackson, Kirill Belashchenko, Athanasios Chantis, Francois Jamet, Mark Van Schilfgaarde

Kirill Belashchenko Publications

This paper summarises the theory and functionality behind Questaal, an open-source suite of codes for calculating the electronic structure and related properties of materials from first principles. The formalism of the linearised muffin-tin orbital (LMTO) method is revisited in detail and developed further by the introduction of short-ranged tight-binding basis functions for full-potential calculations. The LMTO method is presented in both Green's function and wave function formulations for bulk and layered systems. The suite's full-potential LMTO code uses a sophisticated basis and augmentation method that allows an efficient and precise solution to the band problem at different levels of theory, …


The Emergence Of The Local Moment Molecular Spin Transistor, Guanhua Hao, Ruihua Cheng, Peter Dowben Mar 2020

The Emergence Of The Local Moment Molecular Spin Transistor, Guanhua Hao, Ruihua Cheng, Peter Dowben

Peter Dowben Publications

Local moment molecular systems have now been used as the conduction channel in gated spintronics devices, and some of these three terminal devices might even be considered molecular spin transistors. In these systems, the gate voltage can be used to tune the molecular level alignment, while applied magnetic fields have an influence on the spin state, altering the magnetic properties, and providing insights to the magnetic anisotropy. More recently, the use of molecular spin crossover complexes, as the conduction channel, has led to devices that are both nonvolatile and have functionality at higher temperatures. Indeed, some devices have now been …


Probing Ferroelectricity By X-Ray Absorption Spectroscopy In Molecular Crystals, Fujie Tang, Xuanyuan Jiang, Hsin Yu Ko, Jianhang Xu, Mehmet Topsakal, Guanhua Hao, Alpha T. N'Diaye, Peter Dowben, Deyu Lu, Xiaoshan Xu, Xifan Wu Mar 2020

Probing Ferroelectricity By X-Ray Absorption Spectroscopy In Molecular Crystals, Fujie Tang, Xuanyuan Jiang, Hsin Yu Ko, Jianhang Xu, Mehmet Topsakal, Guanhua Hao, Alpha T. N'Diaye, Peter Dowben, Deyu Lu, Xiaoshan Xu, Xifan Wu

Peter Dowben Publications

We carry out X-ray absorption spectroscopy experiment at the oxygen K edge in croconic acid (C5H2O5) crystal as a prototype of ferroelectric organic molecular solid, whose electric polarization is generated by proton transfer. The experimental spectrum is well reproduced by the electron-hole excitation theory simulations from configuration generated by ab initio molecular dynamics simulation. When inversion symmetry is broken in the ferroelectric state, the hydrogen bonding environment on the two bonded molecules become inequivalent. Such a difference is sensitively probed by the bound excitation in the pre-edge, which is strongly localized on the excited …


Effects Of Intrinsic Defects And Alloying With Fe On The Half-Metallicity Of Co2Mnsi, G. G. Baez Flores, Ivan A. Zhuravlev, Kirill Belashchenko Feb 2020

Effects Of Intrinsic Defects And Alloying With Fe On The Half-Metallicity Of Co2Mnsi, G. G. Baez Flores, Ivan A. Zhuravlev, Kirill Belashchenko

Kirill Belashchenko Publications

The electronic structure and half-metallic gap of Co2MnSi in the presence of crystallographic defects, partial Fe substitution for Mn, and thermal spin fluctuations are studied using the coherent potential approximation and the disordered local moment method. In the presence of 5% Co or Mn vacancies the Fermi level shifts down to the minority-spin valence-band maximum. In contrast to NiMnSb, both types of Mn antisite defects in Co2MnSi are strongly exchange coupled to the host magnetization, and thermal spin fluctuations do not strongly affect the half-metallic gap. Partial substitution of Mn by Fe results in considerable changes in the Bloch spectral …


Chiral Magnetism And High-Temperature Skyrmions In B20-Ordered Co-Si, Balamurugan Balasubramanian, Priyanka Manchanda, Rabindra Pahari, Zhen Chen, Wenyong Zhang, Shah R. Valloppilly, Xingzhong Li, Anandakumar Sarella, Lanping Yue, Ahsan Ullah, Pratibha Dev, David A. Muller, Ralph Skomski, George C. Hadjipanayis, David J. Sellmyer Jan 2020

Chiral Magnetism And High-Temperature Skyrmions In B20-Ordered Co-Si, Balamurugan Balasubramanian, Priyanka Manchanda, Rabindra Pahari, Zhen Chen, Wenyong Zhang, Shah R. Valloppilly, Xingzhong Li, Anandakumar Sarella, Lanping Yue, Ahsan Ullah, Pratibha Dev, David A. Muller, Ralph Skomski, George C. Hadjipanayis, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

Magnets with chiral crystal structures and helical spin structures have recently attracted much attention as potential spin-electronics materials, but their relatively low magnetic-ordering temperatures are a disadvantage. While cobalt has long been recognized as an element that promotes high-temperature magnetic ordering, most Co-rich alloys are achiral and exhibit collinear rather than helimagnetic order. Crystallographically, the B20-ordered compound CoSi is an exception due to its chiral structure, but it does not exhibit any kind of magnetic order. Here, we use nonequilibrium processing to produce B20-ordered Co1+xSi1−x with a maximum Co solubility of x = 0.043. Above a critical …


Svat4: A Computer Program For Visualization And Analysis Of Crystal Structures, Xingzhong Li Jan 2020

Svat4: A Computer Program For Visualization And Analysis Of Crystal Structures, Xingzhong Li

Nebraska Center for Materials and Nanoscience: Faculty Publications

SVAT4 is a computer program for interactive visualization of three-dimensional crystal structures, including chemical bonds and magnetic moments. A wide range of functions, e.g. revealing atomic layers and polyhedral clusters, are available for further structural analysis. Atomic sizes, colors, appearance, view directions and view modes (orthographic or perspective views) are adjustable. Customized work for the visualization and analysis can be saved and then reloaded. SVAT4 provides a template to simplify the process of preparation of a new data file. SVAT4 can generate high-quality images for publication and animations for presentations. The usability of SVAT4 is broadened by a software suite …


Rod-Shape Theranostic Nanoparticles Facilitate Antiretroviral Drug Biodistribution And Activity In Human Immunodeficiency Virus Susceptible Cells And Tissues, Bhavesh D. Kevadiya, Brendan Ottemann, Insiya Z. Mukadam, Laura Castellanos, Kristen Sikora, James R. Hilaire, Jatin Machhi, Jonathan Herskovitz, Dhruvkumar Soni, Mahmudul Hasan, Wenting Zhang, Anandakumar Sarella, Jered Garrison, Joellyn Mcmillan, Benson Edagwa, R. Lee Mosley, Richard W. Vachet, Howard E. Gendelman Jan 2020

Rod-Shape Theranostic Nanoparticles Facilitate Antiretroviral Drug Biodistribution And Activity In Human Immunodeficiency Virus Susceptible Cells And Tissues, Bhavesh D. Kevadiya, Brendan Ottemann, Insiya Z. Mukadam, Laura Castellanos, Kristen Sikora, James R. Hilaire, Jatin Machhi, Jonathan Herskovitz, Dhruvkumar Soni, Mahmudul Hasan, Wenting Zhang, Anandakumar Sarella, Jered Garrison, Joellyn Mcmillan, Benson Edagwa, R. Lee Mosley, Richard W. Vachet, Howard E. Gendelman

Nebraska Center for Materials and Nanoscience: Faculty Publications

Human immunodeficiency virus theranostics facilitates the development of long acting (LA) antiretroviral drugs (ARVs) by defining drug-particle cell depots. Optimal drug formulations are made possible based on precise particle composition, structure, shape and size. Through the creation of rod-shaped particles of defined sizes reflective of native LA drugs, theranostic probes can be deployed to measure particle-cell and tissue biodistribution, antiretroviral activities and drug retention.

Methods: Herein, we created multimodal rilpivirine (RPV) 177lutetium labeled bismuth sulfide nanorods (177LuBSNRs) then evaluated their structure, morphology, configuration, chemical composition, biological responses and adverse reactions. Particle biodistribution was analyzed by single …


Diffusion Doping Of Cobalt In Rod-Shape Anatase Tio2 Nanocrystals Leads To Antiferromagnetism†, Shahzahan Mia, Shelton J.P. Varapragasam, Aravind Baride, Choumini Balasanthiran, Balamurugan Balasubramanian, Robert M. Rioux, James D. Hoefelmeyer Jan 2020

Diffusion Doping Of Cobalt In Rod-Shape Anatase Tio2 Nanocrystals Leads To Antiferromagnetism†, Shahzahan Mia, Shelton J.P. Varapragasam, Aravind Baride, Choumini Balasanthiran, Balamurugan Balasubramanian, Robert M. Rioux, James D. Hoefelmeyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

Cobalt(II) ions were adsorbed to the surface of rod-shape anatase TiO2 nanocrystals and subsequently heated to promote ion diffusion into the nanocrystal. After removal of any remaining surface bound cobalt, a sample consisting of strictly cobalt-doped TiO2 was obtained and characterized with powder Xray diffraction, transmission electron microscopy, UV-visible spectroscopy, fluorescence spectroscopy, X-ray photoelectron spectroscopy, SQUID magnetometry, and inductively-coupled plasma atomic emission spectroscopy. The nanocrystal morphology was unchanged in the process and no new crystal phases were detected. The concentration of cobalt in the doped samples linearly correlates with the initial loading of cobalt(II) ions on the nanocrystal surface. Thin …


Detection Of Decoupled Surface And Bulk States In Epitaxial Orthorhombic Sriro3 Thin Films, Prescott E. Evans, Takashi Komesu, Le Zhang, Ding-Fu Shao, Andrew J. Yost, Shiv Kumar, Eike F. Schwier, Kenya Shimada, Evgeny Y. Tsymbal, Xia Hong, P. A. Dowben Jan 2020

Detection Of Decoupled Surface And Bulk States In Epitaxial Orthorhombic Sriro3 Thin Films, Prescott E. Evans, Takashi Komesu, Le Zhang, Ding-Fu Shao, Andrew J. Yost, Shiv Kumar, Eike F. Schwier, Kenya Shimada, Evgeny Y. Tsymbal, Xia Hong, P. A. Dowben

Peter Dowben Publications

We report the experimental evidence of evolving lattice distortion in high quality epitaxial orthorhombic SrIrO3(001) thin films fully strained on (001) SrTiO3 substrates. Angle-resolved X-ray photoemission spectroscopy studies show that the surface layer of 5 nm SrIrO3 films is Sr–O terminated, and subsequent layers recover the semimetallic state, with the band structure consistent with an orthorhombic SrIrO3(001) having the lattice constant of the substrate. While there is no band folding in the experimental band structure, additional super-periodicity is evident in low energy electron diffraction measurements, suggesting the emergence of a transition layer with crystal symmetry evolving from the SrTiO3 substrate …


Ferroelectric Domain Wall Memristor, James P. V. Mcconville, Haidong Lu, Bo Wang, Yueze Tan, Charlotte Cochard, Michele Conroy, Kalani Moore, Alan Harvey, Ursel Bangert, Long-Qing Chen, Alexei Gruverman, J. M. Gregg Jan 2020

Ferroelectric Domain Wall Memristor, James P. V. Mcconville, Haidong Lu, Bo Wang, Yueze Tan, Charlotte Cochard, Michele Conroy, Kalani Moore, Alan Harvey, Ursel Bangert, Long-Qing Chen, Alexei Gruverman, J. M. Gregg

Alexei Gruverman Publications

A domain wall-enabled memristor is created, in thin film lithium niobate capacitors, which shows up to twelve orders of magnitude variation in resistance. Such dramatic changes are caused by the injection of strongly inclined conducting ferroelectric domain walls, which provide conduits for current flow between electrodes. Varying the magnitude of the applied electric-field pulse, used to induce switching, alters the extent to which polarization reversal occurs; this systematically changes the density of the injected conducting domain walls in the ferroelectric layer and hence the resistivity of the capacitor structure as a whole. Hundreds of distinct conductance states can be produced, …


Manipulation Of The Molecular Spin Crossover Transition Of Fe(H2b(Pz)2)2(Bipy) By Addition Of Polar Molecules, Paulo S. Costa, Guanhua Hao, Alpha T. N'Diaye, Lucie Routaboul, Pierre Braunstein, Xin Zhang, Jian Zhang, Thilini K. Ekanayaka, Qin Yin Shi, V. L. Schlegel, Bernard Doudin, Axel Enders, Peter Dowben Jan 2020

Manipulation Of The Molecular Spin Crossover Transition Of Fe(H2b(Pz)2)2(Bipy) By Addition Of Polar Molecules, Paulo S. Costa, Guanhua Hao, Alpha T. N'Diaye, Lucie Routaboul, Pierre Braunstein, Xin Zhang, Jian Zhang, Thilini K. Ekanayaka, Qin Yin Shi, V. L. Schlegel, Bernard Doudin, Axel Enders, Peter Dowben

Peter Dowben Publications

The addition of various dipolar molecules is shown to affect the temperature dependence of the spin state occupancy of the much studied spin crossover Fe(II) complex, [Fe{H2B(pz)2}2(bipy)] (pz = pyrazol-1-yl, bipy = 2,2′-bipyridine). Specifically, the addition of benzimidazole results in a re-entrant spin crossover transition, i.e. the spin state starts in the mostly low spin state, then high spin state occupancy increases, and finally the high spin state occupancy decreases with increasing temperature. This behavior contrasts with that observed when the highly polar p -benzoquinonemonoimine zwitterion C6H2(..NH2)2(..O)2 was mixed with [Fe{H2B(pz)2}2(bipy)], which resulted in locking [Fe{H2B(pz)2}2(bipy)] largely into a low …


Quantitative Study Of The Energy Changes In Voltage-Controlled Spin Crossover Molecular Thin Films, Aaron Mosey, Ashley S. Dale, Guanhua Hao, Alpha T. N’Diaye, Peter Dowben, Ruihua Cheng Jan 2020

Quantitative Study Of The Energy Changes In Voltage-Controlled Spin Crossover Molecular Thin Films, Aaron Mosey, Ashley S. Dale, Guanhua Hao, Alpha T. N’Diaye, Peter Dowben, Ruihua Cheng

Peter Dowben Publications

Voltage-controlled nonvolatile isothermal spin state switching of a [Fe{H2B(pz)2}2(bipy)] (pz=tris(pyrazol-1-1y)-borohydride, bipy=2,2’-bipyridine) film, more than 40 to 50 molecular layers thick, is possible when it is adsorbed onto a molecular ferroelectric substrate. Accompanying this high spin and low spin state switching, at room temperature, we observe a remarkable change in conductance, thereby allowing not only non-volatile voltage control of the spin state (“write”), but also current sensing of the molecular spin state (“read”). Monte Carlo Ising model simulations of the high spin state occupancy, extracted from x-ray absorption spectroscopy, indicate that the energy difference between the low …


Synthesis Of Graphene Using Plasma Etching And Atmospheric Pressure Annealing: Process And Sensor Development, Andrew Robert Graves Jan 2020

Synthesis Of Graphene Using Plasma Etching And Atmospheric Pressure Annealing: Process And Sensor Development, Andrew Robert Graves

Graduate Theses, Dissertations, and Problem Reports

Having been theorized in 1947, it was not until 2004 that graphene was first isolated. In the years since its isolation, graphene has been the subject of intense, world-wide study due to its incredibly diverse array of useful properties. Even though many billions of dollars have been spent on its development, graphene has yet to break out of the laboratory and penetrate mainstream industrial applications markets. This is because graphene faces a ‘grand challenge.’ Simply put, there is currently no method of manufacturing high-quality graphene on the industrial scale. This grand challenge looms particularly large for electronic applications where the …