Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Condensed Matter Physics

Ferroelectric Polarization Control Of Magnetic Anisotropy In Pbzr0.2ti0.8o3/La0.8sr0.2mno3 Heterostructures, Anil Rajapitamahuni, L. L. Tao, Y. Hao, Jingfeng Song, Xiaoshan Xu, Evgeny Y. Tsymbal, Xia Hong Feb 2019

Ferroelectric Polarization Control Of Magnetic Anisotropy In Pbzr0.2ti0.8o3/La0.8sr0.2mno3 Heterostructures, Anil Rajapitamahuni, L. L. Tao, Y. Hao, Jingfeng Song, Xiaoshan Xu, Evgeny Y. Tsymbal, Xia Hong

Evgeny Tsymbal Publications

The interfacial coupling between the switchable polarization and neighboring magnetic order makes ferroelectric/ferromagnetic composite structures a versatile platform to realize voltage control of magnetic anisotropy. We report the nonvolatile ferroelectric field effect modulation of the magnetocrystalline anisotropy (MCA) in epitaxial PbZr0.2Ti0.8O3 (PZT)/La0.8Sr0.2MnO3 (LSMO) heterostructures grown on (001) SrTiO3 substrates. Planar Hall effect measurements show that the in-plane magnetic anisotropy energy in LSMO is enhanced by about 22% in the hole accumulation state compared to the depletion state, in quantitative agreement with our first-principles density functional theory calculations. Modeling the …


Electron Transport In One And Two Dimensional Materials, Samuel William Lagasse Jan 2019

Electron Transport In One And Two Dimensional Materials, Samuel William Lagasse

Legacy Theses & Dissertations (2009 - 2024)

This dissertation presents theoretical and experimental studies in carbon nanotubes (CNTs), graphene, and van der Waals heterostructures. The first half of the dissertation focuses on cutting edge tight-binding-based quantum transport models which are used to study proton irradiation-induced single-event effects in carbon nanotubes [1], total ionizing dose effects in graphene [2], quantum hall effect in graded graphene p-n junctions [3], and ballistic electron focusing in graphene p-n junctions [4]. In each study, tight-binding models are developed, with heavy emphasis on tying to experimental data. Once benchmarked against experiment, properties of each system which are difficult to access in the laboratory, …