Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Carbon nanotube

Articles 1 - 2 of 2

Full-Text Articles in Condensed Matter Physics

Suppresion Of Electron Yield With Carbon Nanotube Forests: A Case Study, Brian Wood, Jordan Lee, Gregory Wilson, T.-C. Shen, Jr Dennison May 2019

Suppresion Of Electron Yield With Carbon Nanotube Forests: A Case Study, Brian Wood, Jordan Lee, Gregory Wilson, T.-C. Shen, Jr Dennison

Conference Proceedings

Electron emission of carbon nanotube (CNT) forests grown on silicon substrates was measured to investigate possible electron yield suppression due to the composition and morphology of CNT forests. CNT forests are vertically-oriented tubular formations of graphitic carbon grown on a substrate; these have been widely investigated for their extreme properties in optical, electrical, and mechanical aspects of physics and material sciences. CNT coatings are good candidates for yield reduction, in analogy with the near-ideal blackbody optical properties of CNT forests. Carbon with its low atomic number has an inherent low yield due to its low density of bulk electrons. Furthermore, …


Influence Of Vibrationally-Induced Structural Changes On Carbon Nanotube Forests Suppression Of Electron Yield, Jordan Lee, Brian Wood, Gregory Wilson, T.-C. Shen, Jr Dennison May 2019

Influence Of Vibrationally-Induced Structural Changes On Carbon Nanotube Forests Suppression Of Electron Yield, Jordan Lee, Brian Wood, Gregory Wilson, T.-C. Shen, Jr Dennison

Conference Proceedings

Carbon nanotube (CNT) forest coatings have been found to lower electron yield from material surfaces. The suppressed yields have been attributed to both the lower inherent yields of low-atomic number carbon and the enhanced electron recapture resulting from the morphology of the carbon layer. To explore the relative contributions of these two causes of yield suppression, tests have been made on CNT forest-coated conducting substrate samples subjected to vibrationally-induced changes of the coating structure. The extent of vibrationally-induced structural changes—due, for example, to shear-force conditions during space-vehicle transit—are of interest, as CNT have been a frequent topic of scientific curiosity …