Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2004

Thermoelectric materials

Articles 1 - 2 of 2

Full-Text Articles in Condensed Matter Physics

Lattice Thermal Conductivity Of K2(Bi1_Zsbz)8se13 Solid Solutions, Jeffrey S. Dyck, Theodora Kyratsi, Evripides Hatzikraniotis, M Paraskevopoulous, H. K. Shin, Ctirad Uher, Mercouri Kanatzidis Apr 2004

Lattice Thermal Conductivity Of K2(Bi1_Zsbz)8se13 Solid Solutions, Jeffrey S. Dyck, Theodora Kyratsi, Evripides Hatzikraniotis, M Paraskevopoulous, H. K. Shin, Ctirad Uher, Mercouri Kanatzidis

Jeffrey Dyck

The family of solid solutions of the type B -K2(Bi1_zSbz)8Se13 (0


Cubic : Bulk Thermoelectric Materials With High Figure Of Merit, Kuei Hsu, Sim Loo, Fu Guo, Wei Chen, Jeffrey Dyck, Cterid Uher, Tim Hogan, E. Polychroniadis, Mercouri Kanatzidis Feb 2004

Cubic : Bulk Thermoelectric Materials With High Figure Of Merit, Kuei Hsu, Sim Loo, Fu Guo, Wei Chen, Jeffrey Dyck, Cterid Uher, Tim Hogan, E. Polychroniadis, Mercouri Kanatzidis

Jeffrey Dyck

The conversion of heat to electricity by thermoelectric devices may play a key role in the future for energy production and utilization. However, in order to meet that role, more efficient thermoelectric materials are needed that are suitable for high-temperature applications. We show that the material system may be suitable for this purpose. With m = 10 and 18 and doped appropriately, n-type semiconductors can be produced that exhibit a high thermoelectric figure of merit of ~2.2 at 800 kelvin. In the temperature range 600 to 900 kelvin, the material is expected to outperform all reported bulk thermoelectrics, thereby earmarking …