Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2004

Series

Discipline
Institution
Keyword
Publication

Articles 1 - 12 of 12

Full-Text Articles in Condensed Matter Physics

Femtosecond Spectrotemporal Magneto-Optics, J.-Y. Bigot, L. Guidoni, E. Beaurepaire, Peter N. Saeta Aug 2004

Femtosecond Spectrotemporal Magneto-Optics, J.-Y. Bigot, L. Guidoni, E. Beaurepaire, Peter N. Saeta

All HMC Faculty Publications and Research

A new method to measure and analyze the time and spectrally resolved polarimetric response of magnetic materials is presented. It allows us to study the ultrafast magnetization dynamics of a CoPt3 ferromagnetic film. The analysis of the pump-induced rotation and ellipticity detected by a broad spectrum probe beam shows that magneto-optical signals predominantly reflect the spin dynamics in ferromagnets.


Qvd Sensors As Focal Plane Instruments For X-Ray Timing Applications, Kent S. Wood, Armen Gulian, Paul S. Ray Jul 2004

Qvd Sensors As Focal Plane Instruments For X-Ray Timing Applications, Kent S. Wood, Armen Gulian, Paul S. Ray

Mathematics, Physics, and Computer Science Faculty Articles and Research

“QVD” detectors are based on thermoelectric heat‐to‐voltage (Q→V) conversion and digital (V→D) readout. For spectroscopic applications, the theoretical performance limits are competitive with superconducting tunnel junction (STJ) detectors and transition edge sensor (TES) devices. We discuss theoretical and demonstrated timing performance of QVD detectors with different design architectures. Detectors with lanthanum‐cerium hexaboride sensors can be very fast, up to 100 MHz/pixel counting rates. They can serve as focal plane detectors for X‐ray timing, in situations where very large apertures are used to gather X‐ray photons at high event rates. Practical implementation of thermoelectric (QVD) detectors requires cryogenic thermoelectric sensors with …


Microscopic Investigation Of Phonon Modes In Sige Alloy Nanocrystals, Shang-Fen Ren, Wei Cheng, Peter Y. Yu Jun 2004

Microscopic Investigation Of Phonon Modes In Sige Alloy Nanocrystals, Shang-Fen Ren, Wei Cheng, Peter Y. Yu

Faculty publications – Physics

Phonon modes in spherical silicon germanium alloy (SiGe) nanocrystals containing up to 1147 atoms (3.6 nm) have been investigated as a function of the Si concentration. Microscopic details of phonon modes, including phonon frequencies and vibrational amplitudes, phonon density-of-states are calculated directly from the dynamic matrices. In particular, the dependence of phonon frequency on the configuration (such as a different ratio of Si to Ge atoms), and location (surface or interior) of clusters of atoms in SiGe alloy nanocrystals have been investigated. Low frequency surface phonons that are related to the spheroidal and torsional modes of a continuum sphere are …


Investigation Of The Diffusion Processes In Self-Processing Acrylamide-Based Photopolymer System, Izabela Naydenova, Raghavendra Jallapuram, Robert Howard, Suzanne Martin, Vincent Toal May 2004

Investigation Of The Diffusion Processes In Self-Processing Acrylamide-Based Photopolymer System, Izabela Naydenova, Raghavendra Jallapuram, Robert Howard, Suzanne Martin, Vincent Toal

Articles

Results from the investigation of the diffusion processes in a dry acrylamide-based photopolymer system are presented. The investigation is carried out in the context of experimental work on optimization of the high spatial frequency response of the photopolymer. Tracing the transmission holographic grating dynamics at short times of exposure is utilized to measure diffusion coefficients. The results reveal that two different diffusion processes contribute with opposite sign to the refractive index modulation responsible for the diffraction grating build up. Monomer diffusion from dark to bright fringe areas increases the refractive index modulation. It is characterized with diffusion constant D0=1.6E-7 cm2/s. …


Anisotropy Of Exchange Stiffness And Its Effect On The Properties Of Magnets, K. D. Belashchenko Apr 2004

Anisotropy Of Exchange Stiffness And Its Effect On The Properties Of Magnets, K. D. Belashchenko

Kirill Belashchenko Publications

Using the spin-spiral formulation of the tight-binding linear muffin-tin orbital method, the principal components of the exchange stiffness tensor are calculated for typical hard magnets including tetragonal CoPt-type and hexagonal YCo5 alloys. The exchange stiffness is strongly anisotropic in all studied alloys. This anisotropy makes the domain wall surface tension anisotropic. Competition between this anisotropic surface tension and magnetostatic energy controls the formation and dynamics of nanoscale domain structures in hard magnets. Anisotropic domain wall bending is described in detail from the general point of view and with application to cellular Sm–Co magnets. It is shown that the repulsive …


Extended Beg Model Of Halogenated Methanes Physisorbed On Ionic Crystals, T. E. Burns, Jr Dennison, Jason Kite Jan 2004

Extended Beg Model Of Halogenated Methanes Physisorbed On Ionic Crystals, T. E. Burns, Jr Dennison, Jason Kite

Journal Articles

The 2D dielectric phases and phase transitions of adsorbed dipolar molecules are modeled using a dilute spin-one Ising model. This model is studied in the Blume-Emery-Griffiths formalism, using a mean-field approximation, where the interaction parameters are related to system interaction energies using a unique averaging procedure. The model is applied to four halogenated methane species physisorbed on MgO(100) and NaCl(100) surfaces using previous experimental and theoretical studies to estimate the interaction energy parameters. We find that temperature- and coverage-dependent antiferroelectric to ferroelectric, coverage-dependant ferroelectric up to ferroelectric down, reentrant ferroelectric to ferroelectric, and order-disorder dipole phase transitions can occur. Phase …


Investigation Of The Photoinduced Surface Relief Modulation In Acrylamide-Based Photopolymer, Izabela Naydenova, Emilia Mihaylova, Suzanne Martin, Vincent Toal Jan 2004

Investigation Of The Photoinduced Surface Relief Modulation In Acrylamide-Based Photopolymer, Izabela Naydenova, Emilia Mihaylova, Suzanne Martin, Vincent Toal

Conference Papers

A surface relief diffraction grating is inscribed in acrylamide photopolymer by holographic recording with spatial frequency below 300 l/mm. The periodic surface modulation appears in addition to a volume phase holographic grating. Due to the nature of the presented photopolymerisable material the gratings are induced by light only and no post-processing is required. An investigation of the dependance of the amplitude of the photoinduced relief modulation on spatial frequency of recording and on sample thickness has been carried out utilising white light interferometry. A model of the mechanism of surface relief formation is proposed on the basis of the measured …


Tem Study Of Crystalline Structures Of Cr–N Thin Films, Xingzhong Li, J. Zhang, David J. Sellmyer Jan 2004

Tem Study Of Crystalline Structures Of Cr–N Thin Films, Xingzhong Li, J. Zhang, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

Cr–N films were grown on Si (001) substrates by reactive magnetron sputtering under an N2/Ar atmosphere at room temperature. The composition of the films, expressed as Cr1–xNx, can be varied by changing the N2/Ar pressure ratio during the synthesis process. Crystalline states of Cr–N films have been studied using electron diffraction. It is well known that two intermediate phases, Cr2N (hexagonal) and CrN (cubic), exist in the Cr–N system, and small variations around the ideal stoichiometry are tolerated. The present study shows that cubic CrN with vacancies rather than hexagonal Cr2 …


Mapping Surface Polarization In Thin Films Of The Ferroelectric Polymer P(Vdf-Trfe)., Bradley W. Peterson, Stephen Ducharme, Vladimir M. Fridkin, Timothy J. Reece Jan 2004

Mapping Surface Polarization In Thin Films Of The Ferroelectric Polymer P(Vdf-Trfe)., Bradley W. Peterson, Stephen Ducharme, Vladimir M. Fridkin, Timothy J. Reece

Stephen Ducharme Publications

Pyroelectric Scanning Microscopy (PSM) has been developed to enable mapping of surface polarization in ferroelectric thin films, in particular the copolymer polyvinylidene fluoride trifluororethylene, or P(VDF-TrFE). The Chynoweth method for dynamically measuring pyroelectric current is employed in conjunction with a micropositioning system to construct two-dimensional images of the film polarization. These images have revealed enhancement of the polarization near the edges of the film below the average coercive field, with the center's polarization increasing thereafter to meet the edge value at saturation.


Electron Irradiation Effects On Ferroelectric Copolymer Langmuir-Blodgett Films, Christina M. Othon, Stephen Ducharme Jan 2004

Electron Irradiation Effects On Ferroelectric Copolymer Langmuir-Blodgett Films, Christina M. Othon, Stephen Ducharme

Stephen Ducharme Publications

The effect of irradiation on the ferroelectric properties of Langmuir-Blodgett films of the copolymer poly(vinylidene fluoride-trifluorethelene) is investigating using 1.26 MeV electrons with dosages from 16 to 110 Mrad. Irradiation causes a systematic decrease in the phase transition temperature, coercive field and polarization of these thin films.


Ferroelectricity At Molecular Level, L. M. Blinov, A. V. Bune, Peter A. Dowben, Stephen Ducharme, Vladimir M. Fridkin, S. P. Palto, K. A. Verkhovskaya, G. V. Vizdrik, S. G. Yudin Jan 2004

Ferroelectricity At Molecular Level, L. M. Blinov, A. V. Bune, Peter A. Dowben, Stephen Ducharme, Vladimir M. Fridkin, S. P. Palto, K. A. Verkhovskaya, G. V. Vizdrik, S. G. Yudin

Stephen Ducharme Publications

he synthesis of ultrathin ferroelectric nanostructures by the Langmuir-Blodgett method and their properties are reviewed. It is shown that ferroelectricity exists in one monolayer of the ferroelectric P(VDF-TrFE) copolymer, i.e., at the molecular level. The specific characteristics of switching of ultrathin ferroelectric films are established.


Spin Uncoupling In Free Nb Clusters: Support For Nascent Superconductivity, Ramiro Moro, Shuangye Yin, Xiaoshan Xu, Walt A. De Heer Jan 2004

Spin Uncoupling In Free Nb Clusters: Support For Nascent Superconductivity, Ramiro Moro, Shuangye Yin, Xiaoshan Xu, Walt A. De Heer

Xiaoshan Xu Papers

Molecular beam Stern-Gerlach deflection measurements on Nb clusters (NbN, N <100) show that at very low temperatures the odd-N clusters deflect due to a single unpaired spin that is uncoupled from the cluster. At higher temperatures the spin is coupled and no deflections are observed. Spin uncoupling occurs concurrently with the transition to the recently found ferroelectric state, which has superconductor characteristics [Science 300, 1265 (2003)]. Spin uncoupling (also seen in V, Ta, and Al clusters) is analogous to the reduction of spin-relaxation rates observed in bulk superconductors below Tc.