Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Condensed Matter Physics

Super P-Sulfur Cathodes For Quasi-Solid-State Lithium-Sulfur-Batteries., Milinda Bharatha Kalutara Koralalage May 2023

Super P-Sulfur Cathodes For Quasi-Solid-State Lithium-Sulfur-Batteries., Milinda Bharatha Kalutara Koralalage

Electronic Theses and Dissertations

Lithium-Sulfur (Li-S) batteries have become a promising candidate to meet the current energy storage demand, with its natural abundance of materials, high theoretical capacity of 1672 mAhg-1, high energy density of 2600 Whkg-1, low cost and lower environmental impact. Sulfide based solid state electrolytes (SSEs) have received greater attention due to their higher ionic conductivity, compatible interface with sulfur-based cathodes, and lower grain boundary resistance. However, the interface between SSEs and cathodes has become a challenge in all solid-state Li-S batteries due to the rigidity of the participating surfaces. A hybrid electrolyte containing SSE coupled with a small amount of …


Lithium Molybdate-Sulfur Battery., Ruchira Ravinath Dharmasena May 2019

Lithium Molybdate-Sulfur Battery., Ruchira Ravinath Dharmasena

Electronic Theses and Dissertations

Rechargeable energy storage systems play a vital role in today’s automobile industry with the emergence of electric vehicles (EVs). In order to meet the targets set by the department of energy (DOE), there is an immediate need of new battery chemistries with higher energy density than the current Li- ion technology. Lithium–sulfur (Li–S) batteries have attracted enormous attention in the energy-storage, due to their high specific energy density of 2600 Wh kg-1 and operational voltage of 2.0 V. Despite the promising electrochemical characteristics, Li-S batteries suffer from serious technical challenges such as dissolution of polysulfides Li2Sx …