Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Condensed Matter Physics

Femtosecond Laser Induced Structural Dynamics And Melting Of Cu (111) Single Crystal. An Ultrafast Time-Resolved X-Ray Diffraction Study, Runze Li, Omar A. Ashour, Jie Chen, H. E. Elsayed-Ali, Peter M. Rentzepis Jan 2017

Femtosecond Laser Induced Structural Dynamics And Melting Of Cu (111) Single Crystal. An Ultrafast Time-Resolved X-Ray Diffraction Study, Runze Li, Omar A. Ashour, Jie Chen, H. E. Elsayed-Ali, Peter M. Rentzepis

Electrical & Computer Engineering Faculty Publications

Femtosecond, 8.04 keV x-ray pulses are used to probe the lattice dynamics of a 150 nm Cu (111) single crystal on a mica substrate irradiated with 400 nm, 100 fs laser pulses. For pump fluences below the damage and melting thresholds, we observed lattice contraction due to the formation of a blast force and coherent acoustic phonons with a period of ∼69 ps. At larger pump fluence, solid to liquid phase transition, annealing, and recrystallization were measured in real time by monitoring the intensity evolution of the probing fs x-ray rocking curves, which agreed well with theoretical simulation results. The …


Dynamics Of Phase Transitions On Low-Index Metal Surfaces, Bo Lin Apr 2003

Dynamics Of Phase Transitions On Low-Index Metal Surfaces, Bo Lin

Electrical & Computer Engineering Theses & Dissertations

The surface superheating and phase transitions at the low-index surface of metal were investigated using conventional continuous and 100-ps time-resolved reflection high-energy electron diffraction. Three metal surfaces, In(111), Au(110) and Pb(111), have been investigated in this work. The high temperature behavior of the In(111) surface was investigated using reflection high-energy electron diffraction with 100-ps temporal resolution. The change of surface vacancy density on In(111) is observed from 300 K to near the bulk melting point. The vacancy-formation energy of In(111) surface is estimated from experimental results. The surface vacancy density is observed to increase with temperature; however, the average random …