Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Condensed Matter Physics

Bulk Heterojunction Photodiode: To Detect The Whole Visible Spectrum, Shahino Mah Abdullah Feb 2013

Bulk Heterojunction Photodiode: To Detect The Whole Visible Spectrum, Shahino Mah Abdullah

Shahino Mah Abdullah

In this paper, we report an organic bulk heterojunction photo-sensor that has been fabricated by using a composite of a polymer material poly(3-hexylthiophene-2,5-diyl) (P3HT) and a dye material vanadyl-phthalocyanine (VOPcPhO). The UV–Vis spectrum shows that this composite exhibits a broad absorption over the whole visible range. The photoluminescence (PL) spectra of P3HT and VOPcPhO blend have been studied to optimize the ratio of P3HT and VOPcPhO. The photo-sensitivity has been investigated under different applied voltages in reverse direction. The photoconductivity sensitivity value has been calculated as 5.65 × 102 Sm/W. The photo-responsivity of the sensor has been investigated under 100 …


Organic Semiconductors: Applications In Solar Photovoltaic And Sensor Devices, Shahino Mah Abdullah Jan 2013

Organic Semiconductors: Applications In Solar Photovoltaic And Sensor Devices, Shahino Mah Abdullah

Shahino Mah Abdullah

Organic semiconductor-based solar photovoltaic cells and sensors are scalable, printable, solution processable, bendable and light-weight. Furthermore, organic semiconductors require low energy fabrication process, hence can be fabricated at low cost as light-weight solar cells and sensors, coupled with the ease of processing, as well as compatibility, with flexible substrates. Organic semiconductors have been identified as a fascinating class of novel semiconductors that have the electrical and optical properties of metals and semiconductors. The continuous demand to improve the properties of organic semiconductors raises the quest for a deep understanding of fundamental issues and relevant electronic processes. Organic semiconductor thin film …


Microfabricated Nanotopological Surfaces For Study Of Adhesion-Dependent Cell Mechanosensitivity, Weiqiang Chen, Yubing Sun, Jianping Fu Jan 2013

Microfabricated Nanotopological Surfaces For Study Of Adhesion-Dependent Cell Mechanosensitivity, Weiqiang Chen, Yubing Sun, Jianping Fu

Weiqiang Chen

Cells exhibit high sensitivity and diverse responses to the intrinsic nanotopography of the extracellular matrix through their nanoscale cellular sensing machinery. A simple microfabrication method for precise control and spatial patterning of the local nanoroughness on glass surfaces by using photolithography and reactive ion etching is reported. It is demonstrated that local nanoroughness as a biophysical cue could regulate a diverse array of NIH/3T3 fi broblast behaviors, including cell morphology, adhesion, proliferation, migration, and cytoskeleton contractility. The capability to control and further predict cellular responses to nanoroughness might suggest novel methods for developing biomaterials mimicking nanotopographic structures in vivo for …


Nanotopography Influences Adhesion, Spreading, And Self-Renewal Of Human Embryonic Stem Cells, Weiqiang Chen, Luis G. Villa-Diaz, Yubing Sun, Shinuo Weng, Jin Koo Kim, Raymond H. W. Lam, Lin Han, Rong Fan, Paul H. Krebsbach, Jianping Fu Apr 2012

Nanotopography Influences Adhesion, Spreading, And Self-Renewal Of Human Embryonic Stem Cells, Weiqiang Chen, Luis G. Villa-Diaz, Yubing Sun, Shinuo Weng, Jin Koo Kim, Raymond H. W. Lam, Lin Han, Rong Fan, Paul H. Krebsbach, Jianping Fu

Weiqiang Chen

Human embryonic stem cells (hESCs) have great potentials for future cell-based therapeutics. However, their mechanosensitivity to biophysical signals from the cellular microenvironment is not well characterized. Here we introduced an effective microfabrication strategy for accurate control and patterning of nanoroughness on glass surfaces. Our results demonstrated that nanotopography could provide a potent regulatory signal over different hESC behaviors, including cell morphology, adhesion, proliferation, clonal expansion, and self-renewal. Our results indicated that topological sensing of hESCs might include feedback regulation involving mechanosensory integrin-mediated cell matrix adhesion, myosin II, and E-cadherin. Our results also demonstrated that cellular responses to nanotopography were cell-type …


Ultrathin, Ultrasmooth And Low-Loss Silver Films Via Wetting And Annealing, Weiqiang Chen, Kuo-Ping Chen, Mark Daniel Thoreson, Alexander Kildishev, Vladimir M. Shalaev Jan 2010

Ultrathin, Ultrasmooth And Low-Loss Silver Films Via Wetting And Annealing, Weiqiang Chen, Kuo-Ping Chen, Mark Daniel Thoreson, Alexander Kildishev, Vladimir M. Shalaev

Weiqiang Chen

We have demonstrated that a thermal annealing treatment can reduce the optical losses in ultrathin, ultrasmooth, silver films deposited on a Ge wetting layer to values as low as the bulk material value and at the same time maintain an ultrasmooth surface. The annealing effect is sensitive to the annealing temperature and time, both of which should be carefully controlled. This annealing treatment is also effective for Ag–SiO2 multilayer composite films.


Dielectric Relaxation Behaviour Of Glycine In Acqueous Solution Medium In The Microwave Frequency Region, Ajaya Kumar Kavala Apr 2008

Dielectric Relaxation Behaviour Of Glycine In Acqueous Solution Medium In The Microwave Frequency Region, Ajaya Kumar Kavala

Mr Ajaya Kumar Kavala

No abstract provided.