Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Condensed Matter Physics

First-Principles Simulations Of Materials Under Extreme Conditions, Kien Nguyen Cong Nov 2019

First-Principles Simulations Of Materials Under Extreme Conditions, Kien Nguyen Cong

USF Tampa Graduate Theses and Dissertations

The investigation of materials at extreme conditions of high pressure and temperature (high-PT), has been one of the greatest scientific endeavors in condensed mater physics, chemistry, astronomy, planetary, and material sciences. Being subjected to high-PT conditions, materials exhibit dramatic changes in both atomic and electronic structure resulting in an emergence of exceptionally interesting phenomena including structural and electronic phase transitions, chemical reactions, and formation of novel compounds with never-previously observed physical and chemical properties. Although new exciting experimental developments in static and dynamic compression combined with new diagnostics/characterization methods allow to uncover new processes and phenomena at high P-T conditions, …


Applied Symmetry For Crystal Structure Prediction, Scott William Fredericks Aug 2019

Applied Symmetry For Crystal Structure Prediction, Scott William Fredericks

UNLV Theses, Dissertations, Professional Papers, and Capstones

This thesis presents an original open-source Python package called PyXtal (pronounced "pi-crystal") that generates random symmetric crystal structures for use in crystal structure prediction (CSP). The primary advantage of PyXtal over existing structure generation tools is its unique symmetrization method. For molecular structures, PyXtal uses an original algorithm to determine the compatibility of molecular point group symmetry with Wyckoff site symmetry. This allows the molecules in generated structures to occupy special Wyckoff positions without breaking the structure's symmetry. This is a new feature which increases the space of search-able structures and in turn improves CSP performance.

It is shown that …


Extended-Range Oscillations And The First Sharp Diffraction Peak In Amorphous Silicon: A Systematic Study, Devilal Dahal Aug 2019

Extended-Range Oscillations And The First Sharp Diffraction Peak In Amorphous Silicon: A Systematic Study, Devilal Dahal

Master's Theses

The first sharp diffraction peak (FSDP), which characterizes the static structure factor of many glassy systems near the wave vector region of 1-2 Å-1 has been observed depending on the temperature, pressure and the degree of annealing of the system. The presence of the FSDP is indicative of the intermediate range order (IRO). In current work, we study the role of the extended- range oscillations on the parameters of the FSDP, i.e., intensity, position, area, and the full width at half maximum (FWHM) by using high-quality simulated models of amorphous silicon. The radial distance up to half of the …


Morphological Study Of Voids In Ultra-Large Models Of Amorphous Silicon, Durga Prasad Paudel Aug 2019

Morphological Study Of Voids In Ultra-Large Models Of Amorphous Silicon, Durga Prasad Paudel

Dissertations

The microstructure of voids in pure and hydrogen-rich amorphous silicon (a:Si) network was studied in ultra-large models of amorphous silicon, using classical and quantum- mechanical simulations, on the nanometer length scale. The nanostructure, particularly voids of device grade ultra-large models of a:Si was studied, in which observed three-dimensional realistic voids were extended using geometrical approach within the experimental limit of void-volume fractions. In device-grade simulated models, the effect of void morphology; size, shape, number density, and distribution on simulated scattering intensities in small- angle region were investigated. The evolution of voids on annealing below the crystallization temperature …


Toward Devices For Exploring Pt-Symmetry In Electronic Transport Of Graphene, Michael Carovillano May 2019

Toward Devices For Exploring Pt-Symmetry In Electronic Transport Of Graphene, Michael Carovillano

Senior Honors Papers / Undergraduate Theses

Parity-time symmetry, or PT -symmetry is the principle that in quantum mechanics a non- Hermitian Hamiltonian is capable of returning real eigenstates and real spectra.Recent research has demonstrated real world observation of PT -symmetry in electronics and optics. We aim to expand the regime of observed PT -symmetry through measurement of the electronic transport of graphene devices. Drawing from analogous experiments, we plan to use balanced ohmic resistance acting as both loss and relative gain to induce the required unbroken PT -symmetry regime. This paper analyzes techniques used in fabrication of such devices as well as the basis of the …


High-Pressure High-Temperature Exploration Of Phase Boundaries Using Raman Spectroscopy, Jasmine Kashmir Hinton May 2019

High-Pressure High-Temperature Exploration Of Phase Boundaries Using Raman Spectroscopy, Jasmine Kashmir Hinton

UNLV Theses, Dissertations, Professional Papers, and Capstones

Metastability of states can provide interesting properties that may not be readily accessible in a material’s ground state. Many materials show high levels of polymorphism, indicating a rich energy landscape and a potential for metastable states. Melt crystallization techniques provide a potential route to these states. We use a resistively heated diamond anvil cell (DAC) with fine control of a system’s pressure and temperature to explore these systems. Raman spectroscopy is used to track subtle structural changes across phase boundaries. Organic systems, such as glycine and aspirin, were our initial interest due to their high polymorphism and reported low melting …


Topological Insulating States In Photonics And Acoustics, Xiang Ni May 2019

Topological Insulating States In Photonics And Acoustics, Xiang Ni

Dissertations, Theses, and Capstone Projects

Recent surge of interest in topological insulators, insulating in their interior but conducting at the surfaces or interfaces of different domains, has led to the discovery of a variety of new topological states, and their topological invariants are characterized by numerous approaches in the category of topological band theory. The common features shared by topological insulators include, the topological phase transition occurs if the bulk bandgap is formed due to the symmetries reduction, the topological invariants exist characterizing the global properties of the material and inherently robust to disorder and continuous perturbations irrespective of the local details. Most importantly, these …


Theoretical Studies Of The Structure And Stability Of Metal Chalcogenide Crntem (1≤N≤6, 1≤M≤8) Clusters, Fnu Sweta Prabha Jan 2019

Theoretical Studies Of The Structure And Stability Of Metal Chalcogenide Crntem (1≤N≤6, 1≤M≤8) Clusters, Fnu Sweta Prabha

Theses and Dissertations

In the presented work, first principle studies on electronic structure, stability, and magnetic properties of metal chalcogenide, CrnTem clusters have been carried out within a density functional framework using generalized gradient functions to incorporate the exchange and correlation effects. The energetic and electronic stability was investigated, and it was found that they are not always correlated as seen in the cluster Cr6Te8 which has smaller gap between its HOMO (Highest Occupied Molecular Orbital) and LUMO (Lowest Unoccupied Molecular Orbital) and a high electron affinity of 3.39 eV indicating lower electronic stability whereas higher fragmentation …