Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology

Series

Institution
Keyword
Publication Year
Publication

Articles 1 - 22 of 22

Full-Text Articles in Condensed Matter Physics

Breakdown Of The Drift-Diffusion Model For Transverse Spin Transport In A Disordered Pt Film, Kirill D. Belashchenko, Giovanni G. Baez Flores, Wuzhang Fang, Alexey Kovalev, Mark Van Schilfgaarde, Paul M. Haney, Mark D. Stiles Oct 2023

Breakdown Of The Drift-Diffusion Model For Transverse Spin Transport In A Disordered Pt Film, Kirill D. Belashchenko, Giovanni G. Baez Flores, Wuzhang Fang, Alexey Kovalev, Mark Van Schilfgaarde, Paul M. Haney, Mark D. Stiles

Department of Physics and Astronomy: Faculty Publications

Spin-accumulation and spin-current profiles are calculated for a disordered Pt film subjected to an in-plane electric current within the nonequilibrium Green's function approach. In the bulklike region of the sample, this approach captures the intrinsic spin Hall effect found in other calculations. Near the surfaces, the results reveal qualitative differences with the results of the widely used spin-diffusion model, even when the boundary conditions are modified to try to account for them. One difference is that the effective spin-diffusion length for transverse spin transport is significantly different from its longitudinal counterpart and is instead similar to the mean-free path. This …


Surface Acoustic Waves Increase Magnetic Domain Wall Velocity, Anil Adhikari, Shireen Adenwalla Jan 2021

Surface Acoustic Waves Increase Magnetic Domain Wall Velocity, Anil Adhikari, Shireen Adenwalla

Shireen Adenwalla Papers

Domain walls in magnetic thin films are being explored for memory applications and the speed at which they move has acquired increasing importance. Magnetic fields and currents have been shown to drive domain walls with speeds exceeding 500 m/s. We investigate another approach to increase domain wall velocities, using high frequency surface acoustic waves to create standing strain waves in a 3 micron wide strip of magnetic film with perpendicular anisotropy. Our measurements, at a resonant frequency of 248.8 MHz, indicate that domain wall velocities increase substantially, even at relatively low applied voltages. Our findings suggest that the strain wave …


Nanostructural Origin Of Semiconductivity And Large Magnetoresistance In Epitaxial Nico2O4/Al2O3 Thin Films, Congmian Zhen, Xiaozhe Zhang, Wengang Wei, Wenzhe Guo, Ankit Pant, Xiaoshan Xu, Jian Shen, Li Ma, Denglu Hou Mar 2018

Nanostructural Origin Of Semiconductivity And Large Magnetoresistance In Epitaxial Nico2O4/Al2O3 Thin Films, Congmian Zhen, Xiaozhe Zhang, Wengang Wei, Wenzhe Guo, Ankit Pant, Xiaoshan Xu, Jian Shen, Li Ma, Denglu Hou

Xiaoshan Xu Papers

Despite low resistivity (~1 mΩ cm), metallic electrical transport has not been commonly observed in inverse spinel NiCo2O4, except in certain epitaxial thin films. Previous studies have stressed the effect of valence mixing and the degree of spinel inversion on the electrical conduction of NiCo2O4 films. In this work, we studied the effect of nanostructural disorder by comparing the NiCo2O4 epitaxial films grown on MgAl2O4 (1 1 1) and on Al2O3 (0 0 1) substrates. Although the optimal growth conditions are similar for the …


Saw Assisted Domain Wall Motion In Co/Pt Multilayers, Westin Edrington, Uday Singh, Maya Abo Dominguez, James Rehwaldt Alexander, Rabindra Nepal, Shireen Adenwalla Jan 2018

Saw Assisted Domain Wall Motion In Co/Pt Multilayers, Westin Edrington, Uday Singh, Maya Abo Dominguez, James Rehwaldt Alexander, Rabindra Nepal, Shireen Adenwalla

Shireen Adenwalla Papers

The motion of domain walls in thin ferromagnetic films is of both fundamental and technological interest. In particular, the ability to use drivers other than magnetic fields to control the positions of domain walls could be exciting for memory applications. Here, we show that high frequency dynamic strain produced by surface acoustic waves is an efficient driver of magnetic domain walls in ferromagnetic films with perpendicular anisotropy. A standing surface acoustic wave of resonant frequency 96.6MHz increases the domain wall velocities in thin films of [Co/Pt]n by an order of magnitude compared to magnetic fields alone. This effect is highly …


Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock Dec 2017

Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this thesis, complex anisotropic materials are investigated and characterized by generalized ellipsometry. In recent years, anisotropic materials have gained considerable interest for novel applications in electronic and optoelectronic devices, mostly due to unique properties that originate from reduced crystal symmetry. Examples include white solid-state lighting devices which have become ubiquitous just recently, and the emergence of high-power, high-voltage electronic transistors and switches in all-electric vehicles. The incorporation of single crystalline material with low crystal symmetry into novel device structures requires reconsideration of existing optical characterization approaches. Here, the generalized ellipsometry concept is extended to include applications for materials with …


Fabrication And Study Of The Structure And Magnetism Of Rare-Earth Free Nanoclusters, Bhaskar Das Apr 2017

Fabrication And Study Of The Structure And Magnetism Of Rare-Earth Free Nanoclusters, Bhaskar Das

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

No abstract provided.


Ferroelectricity And The Phase Transition In Large Area Evaporated Vinylidene Fluoride Oligomer Thin Films, Keith Foreman, Shashi Poddar, Stephen Ducharme, Shireen Adenwalla Jan 2017

Ferroelectricity And The Phase Transition In Large Area Evaporated Vinylidene Fluoride Oligomer Thin Films, Keith Foreman, Shashi Poddar, Stephen Ducharme, Shireen Adenwalla

Shireen Adenwalla Papers

Organic ferroelectric materials, including the well-known poly(vinylidene fluoride) and its copolymers, have been extensively studied and used for a variety of applications. In contrast, the VDF oligomer has not been thoroughly investigated and is not widely used, if used at all. One key advantage the oligomer has over the polymer is that it can be thermally evaporated in vacuum, allowing for the growth of complex heterostructures while maintaining interfacial cleanliness. Here, we report on the ferroelectric properties of high-quality VDF oligomer thin films over relatively large areas on the order of mm2. The operating temperature is identified via …


Light Soaking Phenomena In Organic-Inorganic Mixed Halide Perovskite Single Crystals, Hye Ryung Byun, Dae Young Park, Hye Min Oh, Gon Namkoong, Mun Seok Jeong Jan 2017

Light Soaking Phenomena In Organic-Inorganic Mixed Halide Perovskite Single Crystals, Hye Ryung Byun, Dae Young Park, Hye Min Oh, Gon Namkoong, Mun Seok Jeong

Electrical & Computer Engineering Faculty Publications

Recently, organic inorganic mixed halide perovskite (MAPbX3; MA = CH3NH3+, X = Cl-, Br-, or I-) single crystals with low defect densities have been highlighted as candidate materials for high-efficiency photovoltaics and optoelectronics. Here we report the optical and structural investigations of mixed halide perovskite (MAPbBr3-xIx) single crystals. Mixed halide perovskite single crystals showed strong light soaking phenomena with light illumination conditions that were correlated to the trapping and detrapping events from defect sites. By systematic investigation with optical analysis, we found that the …


Local Writing Of Exchange Biased Domains In A Heterostructure Of Co/Pd Pinned By Magnetoelectric Chromia, Uday Singh, William Echtenkamp, M. Street, Christian Binek, Shireen Adenwalla Sep 2016

Local Writing Of Exchange Biased Domains In A Heterostructure Of Co/Pd Pinned By Magnetoelectric Chromia, Uday Singh, William Echtenkamp, M. Street, Christian Binek, Shireen Adenwalla

Shireen Adenwalla Papers

The writing of micrometer-scaled exchange bias domains by local, laser heating of a thin-film heterostructure consisting of a perpendicular anisotropic ferromagnetic Co/Pd multilayer and a (0001) oriented film of the magnetoelectric antiferromagnet Cr2O3 (chromia) is reported. Exchange coupling between chromia’s boundary magnetization and the ferromagnet leads to perpendicular exchange bias. Focused scanning magneto-optical Kerr measurements are used to measure local hysteresis loops and create a map of the exchange bias distribution as a function of the local boundary magnetization imprinted in the antiferromagnetic pinning layer on field cooling. The robust boundary magnetization of the Cr2O …


The Metal/Organic Interface In Cobalt/Vinylidene Fluoride Heterostructures, Keith Foreman, E Echeverria, Mark A. Koten, R. M. Lindsay, N. Hong, Jeffrey E. Shield, Shireen Adenwalla Jan 2016

The Metal/Organic Interface In Cobalt/Vinylidene Fluoride Heterostructures, Keith Foreman, E Echeverria, Mark A. Koten, R. M. Lindsay, N. Hong, Jeffrey E. Shield, Shireen Adenwalla

Shireen Adenwalla Papers

Organic-based electronic devices are rapidly increasing in popularity, making it essential to understand and characterize the interface between organic materials and metallic electrodes. This work reports on the characterization of the interface between thin films of an emerging organic ferroelectric, vinylidene fluoride (VDF) oligomer, and Co, an important high Curie temperature ferromagnet. Using a wide battery of experimental techniques, it is shown that VDF oligomer thin films as thin as 15 nm can halt, or prevent, Co oxidization in atmospheric conditions, a necessary condition for device applications. Selectivity of magnetic properties, such as remanent magnetization, is enabled by the clarification …


Ferroelectric Characterization And Growth Optimization Of Thermally Evaporated Vinylidene Fluoride Thin Films, Keith Foreman, N. Hong, C. Labedz, C. Shearer, Stephen Ducharme, Shireen Adenwalla Jan 2016

Ferroelectric Characterization And Growth Optimization Of Thermally Evaporated Vinylidene Fluoride Thin Films, Keith Foreman, N. Hong, C. Labedz, C. Shearer, Stephen Ducharme, Shireen Adenwalla

Shireen Adenwalla Papers

Organic thin films have numerous advantages over inorganics in device processing and price. The large polarization of the organic ferroelectric oligomer vinylidene fluoride (VDF) could prove useful for both device applications and the investigation of fundamental physical phenomena. A VDF oligomer thin film vacuum deposition process, such as thermal evaporation, preserves film and interface cleanliness, but is challenging, with successful deposition occurring only within a narrow parameter space. We report on the optimal deposition parameters for VDF oligomer thin films, refining the parameter space for successful deposition, resulting in a high yield of robust ferroelectric films. In particular, we investigate …


Organic Ferroelectric Evaporator With Substrate Cooling And In Situ Transport Capabilities, Keith Foreman, C. Labedz, M. Shearer, Shireen Adenwalla Jan 2014

Organic Ferroelectric Evaporator With Substrate Cooling And In Situ Transport Capabilities, Keith Foreman, C. Labedz, M. Shearer, Shireen Adenwalla

Shireen Adenwalla Papers

We report on the design, operation, and performance of a thermal evaporation chamber capable of evaporating organic thin films. Organic thin films are employed in a diverse range of devices and can provide insight into fundamental physical phenomena. However, growing organic thin films is often challenging and requires very specific deposition parameters. The chamber presented here is capable of cooling sample substrates to temperatures below 130 K and allows for the detachment of the sample from the cooling stage and in situ transport. This permits the use of multiple deposition techniques in separate, but connected, deposition chambers without breaking vacuum …


Scaling Of The Coercive Field In Ferroelectrics At The Nanoscale, R. V. Gaynutdinov, M. Minnekaev, S. Mitko, A. L. Tolstikhina, A. Zenkevich, Stephen Ducharme, Vladimir M. Fridkin Jan 2013

Scaling Of The Coercive Field In Ferroelectrics At The Nanoscale, R. V. Gaynutdinov, M. Minnekaev, S. Mitko, A. L. Tolstikhina, A. Zenkevich, Stephen Ducharme, Vladimir M. Fridkin

Stephen Ducharme Publications

The scaling of the coercive field in ferroelectric films at the nanoscale is investigated experimentally. The scaling in the films of copolymer vinylidene fluoride and BaTiO3 with thickness equal by the order of value to the critical domain nucleus size 1–10 nm reveals deviation from the well-known Kay–Dunn law. At this thickness region coercive field does not depend on thickness and coincides with Landau–Ginzburg–Devonshire value.


Ferroelectric Control Of Magnetocrystalline Anisotropy At Cobalt/Poly(Vinylidene Fluoride) Interfaces, Pavel Lukashev, Tula R. Paudel, Juan M. López-Encarnación, Shireen Adenwalla, Evgeny Y. Tsymbal, Julian P. Velev Jan 2012

Ferroelectric Control Of Magnetocrystalline Anisotropy At Cobalt/Poly(Vinylidene Fluoride) Interfaces, Pavel Lukashev, Tula R. Paudel, Juan M. López-Encarnación, Shireen Adenwalla, Evgeny Y. Tsymbal, Julian P. Velev

Shireen Adenwalla Papers

Electric field control of magnetization is one of the promising avenues for achieving high-density energy-efficient magnetic data storage. Ferroelectric materials can be especially useful for that purpose as a source of very large switchable electric fields when interfaced with a ferromagnet. Organic ferroelectrics, such as poly(vinylidene fluoride) (PVDF), have an additional advantage of being weakly bonded to the ferromagnet, thus minimizing undesirable effects such as interface chemical modification and/or strain coupling. In this work we use first-principles density functional calculations of Co/PVDF heterostructures to demonstrate the effect of ferroelectric polarization of PVDF on the interface magnetocrystalline anisotropy that controls the …


Domain Size And Structure In Exchange Coupled [Co/Pt]/Nio/[Co/Pt] Multilayers, Andrew G. Baruth, Shireen Adenwalla Aug 2011

Domain Size And Structure In Exchange Coupled [Co/Pt]/Nio/[Co/Pt] Multilayers, Andrew G. Baruth, Shireen Adenwalla

Shireen Adenwalla Papers

We investigate the competing effects of interlayer exchange coupling and magnetostatic coupling in the magnetic heterostructure ([Co/Pt]/NiO/[Co/Pt]) with perpendicular magnetic anisotropy (PMA). This particular heterostructure is unique among coupled materials with PMA in directly exhibiting both ferromagnetic and antiferromagnetic coupling, oscillating between the two as a function of spacer layer thickness. By systematically tuning the coupling interactions via a wedge-shaped NiO spacer layer, we explore the energetics that dictate magnetic domain formation using high resolution magnetic force microscopy coupled with the magneto-optical Kerr effect. This technique probes the microscopic and macroscopic magnetic behavior as a continuous function of thickness and …


Boron Carbide Based Solid State Neutron Detectors: The Effects Of Bias And Time Constant On Detection Efficiency, Nina Hong, John Mullins, Keith Foreman, Shireen Adenwalla Jun 2010

Boron Carbide Based Solid State Neutron Detectors: The Effects Of Bias And Time Constant On Detection Efficiency, Nina Hong, John Mullins, Keith Foreman, Shireen Adenwalla

Shireen Adenwalla Papers

Neutron detection in thick boron carbide(BC)/n-type Si heterojunction diodes shows a threefold increase in efficiency with applied bias and longer time constants. The improved efficiencies resulting from long time constants have been conclusively linked to the much longer charge collection times in the BC layer. Neutron detection signals from both the p-type BC layer and the n-type Si side of the heterojunction diode are observed, with comparable efficiencies. Collectively, these provide strong evidence that the semiconducting BC layer plays an active role in neutron detection, both in neutron capture and in charge generation and collection.


Nanometrology Device Standards For Scanning Probe Mmicroscopes And Processes For Their Fabrication And Use, Peter Moeck Jan 2009

Nanometrology Device Standards For Scanning Probe Mmicroscopes And Processes For Their Fabrication And Use, Peter Moeck

Physics Faculty Publications and Presentations

Nanometrology device standards and methods for fabricating and using such devices in conjunction With scanning probe microscopes are described. The fabrication methods comprise: (1) epitaxial growth that produces nanometer sized islands of knoWn morphology, structural, morphological and chemical stability in typical nanometrology environments, and large height-to-width nano-island aspect ratios, and (2) marking suitable crystallographic directions on the device for alignment With a scanning direction.


Precession Electron Diffraction And Its Advantages For Structural Fingerprinting In The Transmission Electron Microscope, Peter Moeck, Sergei Rouvimov Jan 2009

Precession Electron Diffraction And Its Advantages For Structural Fingerprinting In The Transmission Electron Microscope, Peter Moeck, Sergei Rouvimov

Physics Faculty Publications and Presentations

The foundations of precession electron diffraction in a transmission electron microscope are outlined. A brief illustration of the fact that laboratory-based powder X-ray diffraction fingerprinting is not feasible for nanocrystals is given. A procedure for structural fingerprinting of nanocrystals on the basis of structural data that can be extracted from precession electron diffraction spot patterns is proposed.


Structural Identification Of Cubic Iron-Oxide Nanocrystal Mixtures: X-Ray Powder Diffraction Versus Quasi-Kinematic Transmission Electron Microscopy, Peter Moeck Mar 2008

Structural Identification Of Cubic Iron-Oxide Nanocrystal Mixtures: X-Ray Powder Diffraction Versus Quasi-Kinematic Transmission Electron Microscopy, Peter Moeck

Physics Faculty Publications and Presentations

Two novel (and proprietary) strategies for the structural identification of a nanocrystal from either a single high-resolution (HR) transmission electron microscopy (TEM) image or a single precession electron diffraction pattern are proposed and their advantages discussed in comparison to structural fingerprinting from powder X-ray diffraction patterns. Simulations for cubic magnetite and maghemite nanocrystals are used as examples.


Transmission Electron Goniometry And Its Relation To Electron Tomography For Materials Science Apoplications, Peter Moeck, P. Fraundorf Nov 2006

Transmission Electron Goniometry And Its Relation To Electron Tomography For Materials Science Apoplications, Peter Moeck, P. Fraundorf

Physics Faculty Publications and Presentations

Aspects of transmission electron goniometry are discussed. Combined with high resolution phase contrast transmission electron microscopy (HRTEM) and atomic resolution scanning TEM (STEM) in the atomic number contrast (Z-STEM) or the phase contrast bright field mode, transmission electron goniometry offers the opportunity to develop dedicated methods for the crystallographic characterization of nanocrystals in three dimensions. The relationship between transmission electron goniometry and electron tomography for materials science applications is briefly discussed. Internet based java applets that facilitate the application of transmission electron goniometry for cubic crystals with calibrated tilt-rotation and double-tilt specimen holders/goniometers are mentioned. The so called cubic-minimalistic tilt …


Boron-Rich Semiconducting Boron Carbide Neutron Detector, Andrew D. Harken, Ellen E. Day, Brian W. Robertson, Shireen Adenwalla Jan 2005

Boron-Rich Semiconducting Boron Carbide Neutron Detector, Andrew D. Harken, Ellen E. Day, Brian W. Robertson, Shireen Adenwalla

Shireen Adenwalla Papers

Data on the neutron detection capabilities of a variety of boron carbide/Si heterojunction diodes is presented. The pulse height spectra are compared with previously measured conversion layer devices and the variations in shape and position of the peaks are discussed.


Characterization Of Piezoceramic Crosses With Large Range Scanning Capability And Applications For Low Temperature Scanning Tunneling Microscopy, J. A. Helfrich, Shireen Adenwalla, J. B. Ketterson, G. A. Zhitomirsky Jan 1995

Characterization Of Piezoceramic Crosses With Large Range Scanning Capability And Applications For Low Temperature Scanning Tunneling Microscopy, J. A. Helfrich, Shireen Adenwalla, J. B. Ketterson, G. A. Zhitomirsky

Shireen Adenwalla Papers

We have developed a large amplitude piezoceramic scanner which should have numerous applications. Scanning tunneling microscopy (STM) and other scanning probe microscopies predominantly use piezoceramics for the scanning elements. Similarly adaptive optics, high resolution lithography, and micromanipulators are other examples of research which regularly utilize piezoceramic scanners. We present a new geometry for a piezoceramic scanner which allows for both high resolution (~nanometers) and large amplitude (~400 µm) displacements. The cross-shaped geometry makes it possible to produce extremely long pieces with very high tolerances. We have shown its effectiveness by using it as the major component of a low temperature …