Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Condensed Matter Physics

Characterization Of Losses In Superconducting Radio-Frequency Cavities By Combined Temperature And Magnetic Field Mapping, Ishwari Prasad Parajuli Dec 2022

Characterization Of Losses In Superconducting Radio-Frequency Cavities By Combined Temperature And Magnetic Field Mapping, Ishwari Prasad Parajuli

Physics Theses & Dissertations

Superconducting radio-frequency (SRF) cavities are one of the fundamental building blocks of modern particle accelerators. To achieve the highest quality factors (1010-1011), SRF cavities are operated at liquid helium temperatures. Magnetic flux trapped on the surface of SRF cavities during cool-down below the critical temperature is one of the leading sources of residual RF losses. Instruments capable of detecting the distribution of trapped flux on the cavity surface are in high demand in order to better understand its relation to the cavity material, surface treatments and environmental conditions. We have designed, developed, and commissioned two novel …


Multi-Technique Characterization Of Superconducting Materials For Particle Accelerator Applications, Junki Makita Aug 2022

Multi-Technique Characterization Of Superconducting Materials For Particle Accelerator Applications, Junki Makita

Physics Theses & Dissertations

We investigated the performance limitations of superconducting radio-frequency (SRF) cavities and materials using multiple experimental techniques. In particular, this study focuses on understanding the surface properties of nitrogen-doped Nb cavities and superconducting thin films with higher Tc such as Nb3Sn. The main goal of this work is to use different techniques to better understand each aspect of the complex loss mechanism in superconductors to further improve the already highly efficient SRF cavities.

Nitrogen doping applied to a Nb SRF cavity significantly improves the quality factor Q0 compared to a conventional Nb cavity, at an expense of …


Investigation Of Nbnx Thin Films And Nanoparticles Grown By Pulsed Laser Deposition And Thermal Diffusion, Ashraf Hassan Farha Jan 2013

Investigation Of Nbnx Thin Films And Nanoparticles Grown By Pulsed Laser Deposition And Thermal Diffusion, Ashraf Hassan Farha

Electrical & Computer Engineering Theses & Dissertations

Niobium nitride films (NbNx) were grown on Nb and Si (100) substrates using pulsed laser deposition (PLD), laser heating, and thermal diffusion methods. Niobium nitride films were deposited on Nb substrates using PLD with a Q-switched Nd: YAG laser (λ = 1064 nm, 40 ns pulse width, and 10 Hz repetition rate) at different laser fluences, different nitrogen background pressures and deposition temperatures. The effect of changing PLD parameters for films done by PLD was studied. The seen observations establish guidelines for adjusting the laser parameters to achieve the desired morphology and phase of the grown NbNx films.

When the …


Excitation-Induced Ge Quantum Dot Growth On Si(100)-2x1 By Pulsed Laser Deposition, Ali Oguz Er Jul 2011

Excitation-Induced Ge Quantum Dot Growth On Si(100)-2x1 By Pulsed Laser Deposition, Ali Oguz Er

Physics Theses & Dissertations

Self-assembled Ge quantum dots (QD) are grown on Si(100)-(2×1) with laser excitation during growth processes by pulsed laser deposition (PLD). In situ reflection-high energy electron diffraction (RHEED) and post-deposition atomic force microscopy (AFM) are used to study the growth dynamics and morphology of the QDs. A Q-switched Nd:YAG laser (λ = 1064 nm, 40 ns pulse width, 5 J/cm2 fluence, and 10 Hz repetition rate) were used to ablate germanium and irradiate the silicon substrate. Ge QD formation on Si(100)-(2×1) with different substrate temperatures and excitation laser energy densities was studied. The excitation laser reduces the epitaxial growth temperature …


Reflection High-Energy Electron Diffraction Studies Of Indium Phosphide (100) And Growth On Indium And Indium Nitride On Silicon (100), Mohamed Abd-Elsattar Hafez Jul 2008

Reflection High-Energy Electron Diffraction Studies Of Indium Phosphide (100) And Growth On Indium And Indium Nitride On Silicon (100), Mohamed Abd-Elsattar Hafez

Electrical & Computer Engineering Theses & Dissertations

Study of the effects of atomic hydrogen exposure on structure and morphology of semiconductor surfaces is important for fundamental properties and applications. In this dissertation, the electron yield of a hydrogen-cleaned indium phosphide (InP) surface was measured and correlated to the development of the surface morphology, which was monitored by in situ reflection high-energy electron diffraction (RHEED). Atomic hydrogen treatment produced a clean, well-ordered, and (2x4)-reconstructed InP(100) surface. The quantum efficiency, after activation to negative electron affinity, and the secondary electron emission were shown to increase with hydrogen cleaning time. RHEED patterns of low-index InP(100) surface were modified by the …


Investigation Of The Superconducting Properties Of Niobium Radio-Frequency Cavities, Gianluigi Ciovati Jul 2005

Investigation Of The Superconducting Properties Of Niobium Radio-Frequency Cavities, Gianluigi Ciovati

Physics Theses & Dissertations

Radio-frequency (rf) superconducting cavities are widely used to increase the energy of a charged particle beam in particle accelerators. The maximum gradients of cavities made of bulk niobium have constantly improved over the last ten years and they are approaching the theoretical limit of the material. Nevertheless, rf tests of niobium cavities are still showing some "anomalous" losses (so-called "Q-drop"), characterized by a marked increase of the surface resistance at high rf fields, in absence of field emission. A low temperature "in-situ" baking under ultra-high vacuum has been successfully applied by several laboratories to reduce those losses and …


Dynamics Of Phase Transitions On Low-Index Metal Surfaces, Bo Lin Apr 2003

Dynamics Of Phase Transitions On Low-Index Metal Surfaces, Bo Lin

Electrical & Computer Engineering Theses & Dissertations

The surface superheating and phase transitions at the low-index surface of metal were investigated using conventional continuous and 100-ps time-resolved reflection high-energy electron diffraction. Three metal surfaces, In(111), Au(110) and Pb(111), have been investigated in this work. The high temperature behavior of the In(111) surface was investigated using reflection high-energy electron diffraction with 100-ps temporal resolution. The change of surface vacancy density on In(111) is observed from 300 K to near the bulk melting point. The vacancy-formation energy of In(111) surface is estimated from experimental results. The surface vacancy density is observed to increase with temperature; however, the average random …


Compensation And Characterization Of Gallium Arsenide, Randy A. Roush Jan 1995

Compensation And Characterization Of Gallium Arsenide, Randy A. Roush

Electrical & Computer Engineering Theses & Dissertations

The properties of transition metals in gallium arsenide have been previously investigated extensively with respect to activation energies, but little effort has been made to correlate processing parameters with electronic characteristics. Diffusion of copper in gallium arsenide is of technological importance due to the development of GaAs:Cu bistable photoconductive devices. Several techniques are demonstrated in this work to develop and characterize compensated gallium arsenide wafers. The material is created by the thermal diffusion of copper into silicon-doped GaAs. Transition metals generally form deep and shallow acceptors in GaAs, and therefore compensation is possible by material processing such that the shallow …