Open Access. Powered by Scholars. Published by Universities.®

Biological and Chemical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biological and Chemical Physics

Auger Resonance Decay Process In Ar 2p Shell Excitation And Ionization, Y. Lu, Wayne C. Stolte, J.A. R. Samson Oct 1998

Auger Resonance Decay Process In Ar 2p Shell Excitation And Ionization, Y. Lu, Wayne C. Stolte, J.A. R. Samson

Chemistry and Biochemistry Faculty Research

The production and subsequent autoionization of the Ar+ (1D2)6d1 satellite state that is formed either by shake-up or recapture during the Auger decay of a 2p vacancy in Ar has been studied by photoelectron spectroscopy in the energy region from 243 to 256 eV. The creation of near zero energy electrons below and immediately above the Ar 2p ionization threshold is discussed. Some ambiguous points in previous studies are clarified.


Argon-Photoion–Auger-Electron Coincidence Measurements Following K-Shell Excitation By Synchrotron Radiation, Jon C. Levin, C. Biedermann, N. Keller, L. Liljeby, C.-S. O, R. T. Short, Ivan A. Sellin, Dennis W. Lindle Aug 1990

Argon-Photoion–Auger-Electron Coincidence Measurements Following K-Shell Excitation By Synchrotron Radiation, Jon C. Levin, C. Biedermann, N. Keller, L. Liljeby, C.-S. O, R. T. Short, Ivan A. Sellin, Dennis W. Lindle

Chemistry and Biochemistry Faculty Research

Argon photoion spectra have been obtained for the first time in coincidence with K-LL and K-LM Auger electrons, as a function of photon energy. The simplified charge distributions which result exhibit a much more pronounced photon-energy dependence than do the more complicated noncoincident spectra. In the near-K-threshold region, Rydberg shakeoff of np levels, populated by resonant excitation of K electrons, occurs with significant probability, as do double-Auger processes and recapture of the K photoelectron through postcollision interaction.


Experimental Fine-Structure Branching Ratios For Na-Rare-Gas Optical Collisions, Mark D. Havey, F. T. Delahanty, Linda L. Vahala, Gary E. Copeland Oct 1986

Experimental Fine-Structure Branching Ratios For Na-Rare-Gas Optical Collisions, Mark D. Havey, F. T. Delahanty, Linda L. Vahala, Gary E. Copeland

Electrical & Computer Engineering Faculty Publications

Experimental ratios for branching into the fine-structure levels of the Na 3p multiplet, as a consequence of an optical collision with He, Ne, Ar, Kr, or Xe, are reported. The process studied is Na(3s2S1/2)+R+nhNNa(3p2Pj)+R+(n-1)hN, where R represents a rare-gas atom and where the laser frequency N is tuned in the wings of the Na resonance transitions. The branching ratios are defined as I(D1)/I(D2) where I(D1) and I(D2) are measured intensities of the atomic Na D1 and D2 lines. The ratios are determined for detunings ranging from about 650 …