Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Scattering

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 31 - 60 of 150

Full-Text Articles in Physics

Simulation Of Black Hole Inner Accretion Disk-Corona And Optimization Of The Hard X-Ray Polarimeter, X-Calibur, Banafsheh Beheshtipour Aug 2018

Simulation Of Black Hole Inner Accretion Disk-Corona And Optimization Of The Hard X-Ray Polarimeter, X-Calibur, Banafsheh Beheshtipour

Arts & Sciences Electronic Theses and Dissertations

Mass accreting stellar mass and supermassive black holes are strong sources of X-rays. The X- ray observations enable studies of the process of black hole accretion and give us information about the spacetime background. In the framework of my thesis work, I have continued the development of a general-relativistic ray-tracing code enabling the simulation of the Comptonization of photons in the hot accretion disk corona. I use the code to investigate the impact of various approximation schemes for modeling the Comptonization finding that a fully relativistic treatment is needed for accurate predictions in the soft and hard X- ray regimes …


High-Brilliance, High-Flux Compact Inverse Compton Light Source, K. E. Deitrick, G. A. Krafft, B. Terzić, J. R. Delayen Aug 2018

High-Brilliance, High-Flux Compact Inverse Compton Light Source, K. E. Deitrick, G. A. Krafft, B. Terzić, J. R. Delayen

Physics Faculty Publications

The Old Dominion University Compact Light Source (ODU CLS) design concept is presented-a compact Inverse Compton Light Source (ICLS) with flux and brilliance orders of magnitude beyond conventional laboratory-scale sources and greater than other compact ICLS designs. This concept utilizes the physics of inverse Compton scattering of an extremely low emittance electron beam by a laser pulse of rms length of approximately two-thirds of a picosecond (2/3 ps). The accelerator is composed of a superconducting radio frequency (SRF) reentrant gun followed by four double-spoke SRF cavities. After the linac are three quadrupole magnets to focus the electron beam to the …


Probing High-Momentum Protons And Neutrons In Neutron-Rich Nuclei, The Clas Collaboration, L. B. Weinstein, S. Bültmann, D. Bulumulla, G. Charles, G. Dodge, F. Hauenstein, C. E. Hyde, A. Klein, S. Nadeeshani, Y. Prok, Z. W. Zhao Aug 2018

Probing High-Momentum Protons And Neutrons In Neutron-Rich Nuclei, The Clas Collaboration, L. B. Weinstein, S. Bültmann, D. Bulumulla, G. Charles, G. Dodge, F. Hauenstein, C. E. Hyde, A. Klein, S. Nadeeshani, Y. Prok, Z. W. Zhao

Physics Faculty Publications

The atomic nucleus is one of the densest and most complex quantum-mechanical systems in nature. Nuclei account for nearly all the mass of the visible Universe. The properties of individual nucleons (protons and neutrons) in nuclei can be probed by scattering a high-energy particle from the nucleus and detecting this particle after it scatters, often also detecting an additional knocked-out proton. Analysis of electron- and proton-scattering experiments suggests that some nucleons in nuclei form close-proximity neutron–proton pairs with high nucleon momentum, greater than the nuclear Fermi momentum. However, how excess neutrons in neutron-rich nuclei form such close-proximity pairs remains unclear. …


One-Loop Evolution Of Parton Pseudo-Distribution Functions On The Lattice, Anatoly Radyushkin Jul 2018

One-Loop Evolution Of Parton Pseudo-Distribution Functions On The Lattice, Anatoly Radyushkin

Physics Faculty Publications

We incorporate recent calculations of one-loop corrections for the reduced Ioffe-time pseudo-distribution m(v, z(3)(2) thorn to extend the leading-logarithm analysis of lattice data obtained by Orginos et al. We observe that the one-loop corrections contain a large term reflecting the fact that effective distances involved in the most important diagrams are much smaller than the nominal distance z(3). The large correction in this case may be absorbed into the evolution term, and the perturbative expansion used for extraction of parton densities at the μ ≈ 2 GeV scale is under control. The extracted parton distribution is rather close to global …


Electron- And Positron-Impact Ionization Of Inert Gases, R. I. Campeanu, H. R. J. Walters, Colm T. Whelan Jun 2018

Electron- And Positron-Impact Ionization Of Inert Gases, R. I. Campeanu, H. R. J. Walters, Colm T. Whelan

Physics Faculty Publications

Triple-differential cross sections (TDCS) are presented for the electron and positron impact ionization of inert gas atoms in a range of geometries where a number of significant few body effects compete to define the shape of the TDCS. Using both positrons and electrons as projectiles has opened up the possibility of performing complementary studies which could effectively isolate competing interactions which cannot be separately detected in an experiment with a single projectile. A comparison is presented between theory and the recent experiments of [Gavin, deLucio, and DuBois, Phys. Rev. A95, 062703 (2017)] for e± and contrasted with the …


Nucleon And Nuclear Structure Through Dilepton Production, I. V. Anikin, N. Baltzell, M. Boer, R. Boussarie, V. M. Braun, S. J. Brodsky, A. Camsonne, W. C. Chang, L. Colaneri, C. E. Hyde Apr 2018

Nucleon And Nuclear Structure Through Dilepton Production, I. V. Anikin, N. Baltzell, M. Boer, R. Boussarie, V. M. Braun, S. J. Brodsky, A. Camsonne, W. C. Chang, L. Colaneri, C. E. Hyde

Physics Faculty Publications

Transverse momentum distributions and generalized parton distributions provide a comprehensive framework for the three-dimensional imaging of the nucleon and the nucleus experimentally using deeply virtual semi-exclusive and exclusive processes. The advent of combined high luminosity facilities and large acceptance detector capabilities enables experimental investigation of the partonic structure of hadrons with time-like virtual probes, in complement to the rich on-going space-like virtual probe program. The merits and benefits of the dilepton production channel for nuclear structure studies are discussed within the context of the International Workshop on Nucleon and Nuclear Structure through Dilepton Production taking place at the European Center …


Pulse Height Spectra Analysis Of A Neutron Energy Tuning Assembly, Jason R. Stickney Mar 2018

Pulse Height Spectra Analysis Of A Neutron Energy Tuning Assembly, Jason R. Stickney

Theses and Dissertations

An energy tuning assembly (ETA) was previously designed and built for the purpose of irradiating samples with a combination of a thermonuclear and a prompt fission neutron spectrum. Initial research was performed to characterize the performance of the ETA at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron using 33 MeV deuteron breakup on tantalum as the neutron source. This research analyzes detector responses collected from three EJ-309 detectors used to characterize the ETA generated neutron field. A signal processing chain was developed to reduce the full waveform data into a pulse height spectrum. The primary goal was to develop a …


General Solution Of The Schrödinger Equation With Potential Field Quantization, Hasan Hüseyi̇n Erbi̇l Jan 2018

General Solution Of The Schrödinger Equation With Potential Field Quantization, Hasan Hüseyi̇n Erbi̇l

Turkish Journal of Physics

A simple procedure has been found for the general solution of the time-independent Schrödinger equation (SE) with the help of quantization of potential area in one dimension without making any approximation. Energy values are not dependent on wave functions. So, to find the energy values, it is enough to find the classic turning points of the potential function. Two different solutions were obtained, namely, symmetric and antisymmetric in bound states. These normalized wave functions are always periodic. It is enough to take the integral of the square root of the potential energy function to find the normalized wave functions. If …


Simulation Of Inverse Compton Scattering And Its Implications On The Scattered Linewidth, N. Ranjan, B. Terzić, G. A. Krafft, V. Petrillo, I. Drebot, L. Serafini Jan 2018

Simulation Of Inverse Compton Scattering And Its Implications On The Scattered Linewidth, N. Ranjan, B. Terzić, G. A. Krafft, V. Petrillo, I. Drebot, L. Serafini

Physics Faculty Publications

Rising interest in inverse Compton sources has increased the need for efficient models that properly quantify the behavior of scattered radiation given a set of interaction parameters. The current state-of-the-art simulations rely on Monte Carlo-based methods, which, while properly expressing scattering behavior in high-probability regions of the produced spectra, may not correctly simulate such behavior in low-probability regions (e.g. tails of spectra). Moreover, sampling may take an inordinate amount of time for the desired accuracy to be achieved. In this paper, we present an analytic derivation of the expression describing the scattered radiation linewidth and propose a model to describe …


Search For Three-Nucleon Short-Range Correlations In Light Nuclei, Z. Ye, P. Solvignon, D. Nguten, P. Aguilera, Z. Ahmed, H. Albataineh, K. Allada, B. Anderson, D. Anez, L. B. Weinstein Jan 2018

Search For Three-Nucleon Short-Range Correlations In Light Nuclei, Z. Ye, P. Solvignon, D. Nguten, P. Aguilera, Z. Ahmed, H. Albataineh, K. Allada, B. Anderson, D. Anez, L. B. Weinstein

Physics Faculty Publications

We present new data probing short-range correlations (SRCs) in nuclei through the measurement of electron scattering off high-momentum nucleons in nuclei. The inclusive 4He/3He cross section ratio is observed to be both x and Q2 independent for 1.5 < x < 2, confirming the dominance of two-nucleon short-range correlations. For x > 2, our data support the hypothesis that a previous claim of three-nucleon correlation dominance was an artifact caused by the limited resolution of the measurement. While 3N-SRCs appear to have an important contribution, our data show that isolating 3N-SRCs is significantly more complicated than for 2N-SRCs.


Numerical Study Of The Relativistic Three-Body Quantization Condition In The Isotropic Approximation, Raúl A. Briceño, Maxwell T. Hansen, Stephen R. Sharpe Jan 2018

Numerical Study Of The Relativistic Three-Body Quantization Condition In The Isotropic Approximation, Raúl A. Briceño, Maxwell T. Hansen, Stephen R. Sharpe

Physics Faculty Publications

We present numerical results showing how our recently proposed relativistic three-particle quantization condition can be used in practice. Using the isotropic (generalized s-wave) approximation, and keeping only the leading terms in the effective range expansion, we show how the quantization condition can be solved numerically in a straightforward manner. In addition, we show how the integral equations that relate the intermediate three-particle infinite-volume scattering quantity, Kdf,3, to the physical scattering amplitude can be solved at and below threshold. We test our methods by reproducing known analytic results for the 1/L expansion of the threshold state, the volume …


Effects Of Interface Scattering And Carrier Localization On Conductance Of Cu-Based Superlattices, Jiyoon Jessica Kim Jan 2018

Effects Of Interface Scattering And Carrier Localization On Conductance Of Cu-Based Superlattices, Jiyoon Jessica Kim

Legacy Theses & Dissertations (2009 - 2024)

Ultra-thin films and multilayer structures are widely used in modern technologies such as semiconductor logic and memory devices. As film thickness decreases to a few nanometers or smaller, classical transport theories are no longer valid. In this study, we investigate transport properties of superlattices with layer thickness reduced to ~1 nm. The superlattices are made of alternating layers of Cu and a transition metal (Ru, Mo, and Co). The layers are deposited by physical vapor deposition and resistance changes during superlattice growth are measured. The observed resistance evolution reveals the effects of carrier scattering and localization at the interfaces.


Conducting Polyelectrolyte Complexes: Assembly, Structure, And Transport, Michael A. Leaf Nov 2017

Conducting Polyelectrolyte Complexes: Assembly, Structure, And Transport, Michael A. Leaf

Doctoral Dissertations

Decades of progress have yielded a tremendous variety of organic electronics, with great strides in the development of photovoltaics, thermoelectrics and other flexible devices. Ubiquitous in these research areas are films of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonic acid) (PEDOT: PSS), a complex of oppositely-charged polyelectrolytes initially suspended in water before film formation. This material has high electronic conductivity and good water processability. Pristine film conductivity is somewhat low, but is dramatically enhanced through simple treatments like ionic liquid addition or shear. Can this enhancement be understood so that further optimization might render PEDOT: PSS commercially viable? PEDOT: PSS is a complicated material, with …


Lattice Qcd Exploration Of Parton Pseudo-Distribution Functions, Kostas Orginos, Anatoly Radyushkin, Joseph Karpie, Savvas Zafeiropoulos Nov 2017

Lattice Qcd Exploration Of Parton Pseudo-Distribution Functions, Kostas Orginos, Anatoly Radyushkin, Joseph Karpie, Savvas Zafeiropoulos

Physics Faculty Publications

We demonstrate a new method of extracting parton distributions from lattice calculations. The starting idea is to treat the generic equal-time matrix element M(Pz(3), z(3)(2)) as a function of the Ioffe time nu = Pz(3) and the distance z(3). The next step is to divide M(Pz(3), z(3)(2)) by the rest-frame density M(0, z(3)(2)). Our lattice calculation shows a linear exponential z(3)-dependence in the rest-frame function, expected from the Z(z(3)(2)) factor generated by the gauge link. Still, we observe that the ratio M (Pz(3), z(3)(2))/M(Pz(3), z(3)(2)) has a Gaussian-type behavior with respect to z(3) for 6 values of P used in …


Studying The Reaction 34ar(Alpha,P)37k And Its Impact On Xrb Nucleosynthesis And Observables, Amber C. Lauer Oct 2017

Studying The Reaction 34ar(Alpha,P)37k And Its Impact On Xrb Nucleosynthesis And Observables, Amber C. Lauer

LSU Doctoral Dissertations

Type I X-Ray bursts (XRB’s) are a site of nucleosynthesis for some proton-rich elements up to A=100. These stellar explosions occur on the surface of a neutron star in a Low- Mass X-ray Binary accreting H- and He-rich material. During accretion nuclear burning occurs through stable processes such as the hot CNO (HCNO) cycles, but at some critical accretion condition the the HCNO cycles are bypassed through a breakout reaction. This triggers the thermonuclear runaway of the XRB. During the burst, nucleosynthesis on certain proton-rich nuclei, called (α, p) waiting points, can stall which could stall the energy generation and …


Vacuum Birefringence, The Photon Anomalous Magnetic Moment And The Neutron Star Rx J1856.5−3754, Sree Ram Valluri, J.W. Mielniczuk, Farrukh Chishtie, D. Lamm, S. Auddy Aug 2017

Vacuum Birefringence, The Photon Anomalous Magnetic Moment And The Neutron Star Rx J1856.5−3754, Sree Ram Valluri, J.W. Mielniczuk, Farrukh Chishtie, D. Lamm, S. Auddy

Physics and Astronomy Publications

We analyse the spectrum of the Hamiltonian of a photon propagating in a strong magnetic field BBcr, where Bcr=m2e≃4.4×1013" role="presentation">Bcr=m2e≃4.4×1013 G is the Schwinger critical field. We show that the anomalous magnetic moment of a photon in the one-loop approximation is a non-decreasing function of the magnetic field B in the range 0 ≤ B ≤ 30 Bcr. We provide a numerical representation of the expression for the anomalous magnetic moment in terms of special functions. We find that the anomalous magnetic moment μγ of a photon for B = 30 B …


Angular Distribution Of Single-Photon Superradiance In A Dilute And Cold Atomic Ensemble, A. S. Kuraptsev, I. M. Sokolov, M. D. Havey Aug 2017

Angular Distribution Of Single-Photon Superradiance In A Dilute And Cold Atomic Ensemble, A. S. Kuraptsev, I. M. Sokolov, M. D. Havey

Physics Faculty Publications

On the basis of a quantum microscopic approach we study the dynamics of the afterglow of a dilute Gaussian atomic ensemble excited by pulsed radiation. Taking into account the vector nature of the electromagnetic field we analyze in detail the angular and polarization distribution of single-photon superradiance of such an ensemble. The dependence of the angular distribution of superradiance on the length of the pulse and its carrier frequency as well as on the size and the shape of the atomic clouds is studied. We show that there is substantial dependence of the superradiant emission on the polarization and the …


Inverse Design Of Perfectly Transmitting Eigenchannels In Scattering Media, Milan Koirala, Raktim Sarma, Hui Cao, Alexey Yamilov Aug 2017

Inverse Design Of Perfectly Transmitting Eigenchannels In Scattering Media, Milan Koirala, Raktim Sarma, Hui Cao, Alexey Yamilov

Physics Faculty Research & Creative Works

Light-matter interactions inside a turbid medium can be controlled by tailoring the spatial distribution of energy density throughout the system. Wavefront shaping allows selective coupling of incident light to different transmission eigenchannels, producing dramatically different spatial intensity profiles. In contrast to the density of transmission eigenvalues that is dictated by the universal bimodal distribution, the spatial structures of the eigenchannels are not universal and depend on the confinement geometry of the system. Here, we develop and verify a model for the transmission eigenchannel with the corresponding eigenvalue close to unity. By projecting the original problem of two-dimensional diffusion in a …


Rosenbluth Separation Of The Π0 Electroproduction Cross Section Off The Neutron, M. Mazouz, Z. Ahmed, H. Albataineh, K. Allada, K. A. Aniol, V. Bellini, M. Benali, W. Boeglin, P. Bertin, M. Canan, C. E. Hyde, S. Koirala, M. N. H. Rashad Jun 2017

Rosenbluth Separation Of The Π0 Electroproduction Cross Section Off The Neutron, M. Mazouz, Z. Ahmed, H. Albataineh, K. Allada, K. A. Aniol, V. Bellini, M. Benali, W. Boeglin, P. Bertin, M. Canan, C. E. Hyde, S. Koirala, M. N. H. Rashad

Physics Faculty Publications

We report the first longitudinal-transverse separation of the deeply virtual exclusive π0 electroproduction cross section off the neutron and coherent deuteron. The corresponding four structure functions dσL/dt, dσT/dt, dσLT/dt, and dσTT/dt are extracted as a function of the momentum transfer to the recoil system at Q2 = 1.75 GeV2 and xB = 0.36. The ed -> edπ0 cross sections are found compatible with the small values expected from theoretical models. The en -> enπ0 cross sections show a dominance from the response to transversely polarized …


Asymptotic Behavior Of Waves In A Nonuniform Medium, Nezam Iraniparast, Lan Nguyen, Mikhail Khenner Jun 2017

Asymptotic Behavior Of Waves In A Nonuniform Medium, Nezam Iraniparast, Lan Nguyen, Mikhail Khenner

Applications and Applied Mathematics: An International Journal (AAM)

An incoming wave on an infinite string, that has uniform density except for one or two jump discontinuities, splits into transmitted and reflected waves. These waves can explicitly be described in terms of the incoming wave with changes in the amplitude and speed. But when a string or membrane has continuous inhomogeneity in a finite region the waves can only be approximated or described asymptotically. Here, we study the cases of monochromatic waves along a nonuniform density string and plane waves along a membrane with nonuniform density. In both cases the speed of the physical system is assumed to tend …


Analysis Of Beam Deflection Measurements In The Presence Of Linear Absorption, Manuel R. Ferdinandus, Jennifer Reed, Kent L. Averett, F. Kenneth Hopkins, Augustine Urbas May 2017

Analysis Of Beam Deflection Measurements In The Presence Of Linear Absorption, Manuel R. Ferdinandus, Jennifer Reed, Kent L. Averett, F. Kenneth Hopkins, Augustine Urbas

Faculty Publications

We develop a series of analytical approximations allowing for rapid extraction of the nonlinear parameters from beam deflection measurements. We then apply these approximations to the analysis of cadmium silicon phosphide and compare the results against previously published parameter extraction methods and find good agreement for typical experimental conditions.


Exclusive Η Electroproduction At W > 2 Gev With Clas And Transversity Generalized Parton Distributions, I. Bedlinskiy, V. Kubarovsky, P. Stoler, K. P. Adhikari, Z. Akbar, S. Anefalos Pereira, H. Avakian, J. Ball, N. A. Baltzell, M. Battaglieri, C. E. Hyde, M. Khachatryan, S E. Kuhn, Y. Prok, B. Torayev, L. B. Weinstein Mar 2017

Exclusive Η Electroproduction At W > 2 Gev With Clas And Transversity Generalized Parton Distributions, I. Bedlinskiy, V. Kubarovsky, P. Stoler, K. P. Adhikari, Z. Akbar, S. Anefalos Pereira, H. Avakian, J. Ball, N. A. Baltzell, M. Battaglieri, C. E. Hyde, M. Khachatryan, S E. Kuhn, Y. Prok, B. Torayev, L. B. Weinstein

Physics Faculty Publications

The cross section of the exclusive η electroproduction reaction ep -> e'p' η was measured at Jefferson Laboratory with a 5.75 GeV electron beam and the CLAS detector. Differential cross sections d4σ /dtdQ2 dxBd φη and structure functions σUT + εσL, σTT, and σLT, as functions of t, were obtained over a wide range of Q2 and xB. The η structure functions are compared with those previously measured for π0 at the same kinematics. At low t, both π …


Improving The Sensitivity Of A Pulsar Timing Array: Correcting For Interstellar Scattering Delays, Jacob E. Turner Jan 2017

Improving The Sensitivity Of A Pulsar Timing Array: Correcting For Interstellar Scattering Delays, Jacob E. Turner

Honors Papers

The NANOGrav collaboration aims to detect low frequency gravitational waves by measuring the arrival times of radio signals from pulsars. A confirmation of such a gravitational wave signal requires timing tens of pulsars with a precision of better than 100 nanoseconds for around 10 – 25 years. A crucial component of the success of pulsar timing relies on understanding how the interstellar medium affects timing accuracy. Current pulsar timing models account only for the large-scale dispersion delays from the ISM. As a result, the relatively small-scale propagation effects caused by scattering are partially absorbed into the dispersion delay component of …


Nonperturbative Evolution Of Parton Quasi-Distributions, A. V. Radyushkin Jan 2017

Nonperturbative Evolution Of Parton Quasi-Distributions, A. V. Radyushkin

Physics Faculty Publications

Using the formalism of parton virtuality distribution functions (VDFs) we establish a connection between the transverse momentum dependent distributions (TMDs) F(x,k2) and quasi-distributions (PQDs) Q(y,p3) introduced recently by X. Ji for lattice QCD extraction of parton distributions f(x). We build models for PQDs from the VDF-based models for soft TMDs, and analyze the p3 dependence of the resulting PQDs. We observe a strong nonperturbative evolution of PQDs for small and moderately large values of p3 reflecting the transverse momentum dependence of TMDs. Thus, the study of PQDs on the lattice …


Reflective Inverse Diffusion, Kenneth W. Burgi, Jessica Ullom, Michael A. Marciniak, Mark E. Oxley Nov 2016

Reflective Inverse Diffusion, Kenneth W. Burgi, Jessica Ullom, Michael A. Marciniak, Mark E. Oxley

Faculty Publications

Phase front modulation was previously used to refocus light after transmission through scattering media. This process has been adapted here to work in reflection. A liquid crystal spatial light modulator is used to conjugate the phase scattering properties of diffuse reflectors to produce a converging phase front just after reflection. The resultant focused spot had intensity enhancement values between 13 and 122 depending on the type of reflector. The intensity enhancement of more specular materials was greater in the specular region, while diffuse reflector materials achieved a greater enhancement in non-specular regions, facilitating non-mechanical steering of the focused spot. Scalar …


Charged Higgs Production In Association With A Top Quark At Approximate Nnlo, Nikolaos Kidonakis Jul 2016

Charged Higgs Production In Association With A Top Quark At Approximate Nnlo, Nikolaos Kidonakis

Faculty and Research Publications

I present approximate next-to-next-to-leading-order (aNNLO) total and differential cross sections for charged Higgs production in association with a top quark at LHC energies. The aNNLO results for the process bg→tH− are derived from next-to-next-to-leading-logarithm (NNLL) resummation of soft-gluon corrections. Scale and parton-distribution uncertainties for the cross sections are shown. The top-quark transverse-momentum and rapidity distributions are also calculated.


Image-Based Bidirectional Reflectance Distribution Function Of Human Skin In The Visible And Near Infrared, Jeffrey R. Bintz Mar 2016

Image-Based Bidirectional Reflectance Distribution Function Of Human Skin In The Visible And Near Infrared, Jeffrey R. Bintz

Theses and Dissertations

Human detection is an important first step in locating and tracking people in many missions including SAR and ISR operations. Recent detection systems utilize hyperspectral and multispectral technology to increase the acquired spectral content in imagery and subsequently better identify targets. This research demonstrates human detection through a multispectral skin detection system to exploit the unique optical properties of human skin. At wavelengths in the VIS and NIR regions of the electromagnetic spectrum, an individual can be identified by their unique skin parameters. Current detection methods base the skin pixel selection criteria on a diffuse skin reflectance model; however, it …


Substrate Effects And Dielectric Integration In 2d Electronics, Bhim Prasad Chamlagain Jan 2016

Substrate Effects And Dielectric Integration In 2d Electronics, Bhim Prasad Chamlagain

Wayne State University Dissertations

The ultra-thin body of monolayer (and few-layer) two dimensional (2D) semiconducting materials such as transitional metal dichalconiges (TMDs), black phosphorous (BP) has demonstrated tremendous beneficial physical, transport, and optical properties for a wide range of applications. Because of their ultrathin bodies, the properties of 2D materials are highly sensitive to environmental effects. Particularly, the performance of 2D semiconductor electronic devices is strongly dependent on the substrate/dielectric properties, extrinsic impurities and absorbates. In this work, we systematically studied the transport properties of mechanically exfoliated few layer TMD field-effect transistors (FETs) consistently fabricated on various substrates including SiO2,Parylene –C, Al2O3, SiO2 modified …


Measurement Of The Target-Normal Single-Spin Asymmetry In Quasielastic Scattering From The Reaction 3He(E,E′ ), Chiranjib Dutta, Wolfgang Korsch, Y.-W. Zhang, E. Long, M. Mihovilovič, G. Jin, K. Allada, B. Anderson, J. R. M. Annand, T. Averett, C. Ayerbe-Gayoso, W. Boeglin Oct 2015

Measurement Of The Target-Normal Single-Spin Asymmetry In Quasielastic Scattering From The Reaction 3He↑(E,E′ ), Chiranjib Dutta, Wolfgang Korsch, Y.-W. Zhang, E. Long, M. Mihovilovič, G. Jin, K. Allada, B. Anderson, J. R. M. Annand, T. Averett, C. Ayerbe-Gayoso, W. Boeglin

Physics and Astronomy Faculty Publications

We report the first measurement of the target single-spin asymmetry, Ay, in quasielastic scattering from the inclusive reaction 3He(e,e′ ) on a 3He gas target polarized normal to the lepton scattering plane. Assuming time-reversal invariance, this asymmetry is strictly zero for one-photon exchange. A nonzero Ay can arise from the interference between the one- and two-photon exchange processes which is sensitive to the details of the substructure of the nucleon. An experiment recently completed at Jefferson Lab yielded asymmetries with high statistical precision at Q2=0.13, 0.46, and …


Experimental And Theoretical Basis For A Closed-Form Spectral Brdf Model, Samuel D. Butler Sep 2015

Experimental And Theoretical Basis For A Closed-Form Spectral Brdf Model, Samuel D. Butler

Theses and Dissertations

The microfacet class of BRDF models is frequently used to calculate optical scatter from realistic surfaces using geometric optics, but has the disadvantage of not being able to consider wavelength dependence. This dissertation works toward development of a closed-form approximation to the BRDF that is suitable for hyperspectral remote sensing by presenting measured BRDF data of 12 different materials at four different incident angles and up to seven different wavelengths between 3.39 and 10.6 micrometer. The data was intended to be fit to various microfacet BRDF models to determine an appropriate form of the wavelength scaling. However, when fitting the …