Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Perturbation theory

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 33

Full-Text Articles in Physics

A Formalism For Extracting Track Functions From Jet Measurements, Kyle Lee, Ian Moult, Felix Ringer, Wouter J. Waalewijn Jan 2024

A Formalism For Extracting Track Functions From Jet Measurements, Kyle Lee, Ian Moult, Felix Ringer, Wouter J. Waalewijn

Physics Faculty Publications

The continued success of the jet substructure program will require widespread use of tracking information to enable increasingly precise measurements of a broader class of observables. The recent reformulation of jet substructure in terms of energy correlators has simplified the incorporation of universal non-perturbative matrix elements, so called “track functions”, in jet substructure calculations. These advances make it timely to understand how these universal non-perturbative functions can be extracted from hadron collider data, which is complicated by the use jet algorithms. In this paper we introduce a new class of jet functions, which we call (semi-inclusive) track jet functions, which …


Definition Of Fragmentation Functions And The Violation Of Sum Rules, John Collins, Ted C. Rogers Jan 2024

Definition Of Fragmentation Functions And The Violation Of Sum Rules, John Collins, Ted C. Rogers

Physics Faculty Publications

We point out a problem with the formulation and derivations of sum rules for quark fragmentation functions that impacts their validity in QCD, but which potentially points toward an improved understanding of final states in inclusive hard processes. Fragmentation functions give the distribution of final-state hadrons arising from a parton exiting a hard scattering, and the sum rules for momentum, electric charge, etc. express conservation of these quantities. The problem arises from a mismatch between the quark quantum numbers of the initial quark and the fact that all observed final-state hadrons are confined bound states with color zero. We point …


Machine-Assisted Discovery Of Integrable Symplectic Mappings, T. Zolkin, Y. Kharkov, S. Nagaitsev Jan 2023

Machine-Assisted Discovery Of Integrable Symplectic Mappings, T. Zolkin, Y. Kharkov, S. Nagaitsev

Physics Faculty Publications

We present a new automated method for finding integrable symplectic maps of the plane. These dynamical systems possess a hidden symmetry associated with an existence of conserved quantities, i.e., integrals of motion. The core idea of the algorithm is based on the knowledge that the evolution of an integrable system in the phase space is restricted to a lower-dimensional submanifold. Limiting ourselves to polygon invariants of motion, we analyze the shape of individual trajectories thus successfully distinguishing integrable motion from chaotic cases. For example, our method rediscovers some of the famous McMillan-Suris integrable mappings and ultradiscrete Painlevé equations. In total, …


Long-Range Interactions For Hydrogen Atoms In Excited D States, Chandra M. Adhikari, Ulrich D. Jentschura Mar 2022

Long-Range Interactions For Hydrogen Atoms In Excited D States, Chandra M. Adhikari, Ulrich D. Jentschura

Physics Faculty Research & Creative Works

Pressure shifts inside an atomic beam are among the more theoretically challenging effects in high-precision measurements of atomic transitions. A crucial element in their theoretical analysis is the understanding of long-range interatomic interactions inside the beam. For excited reference states, the presence of quasi-degenerate states leads to additional challenges, due to the necessity to diagonalize large matrices in the quasi-degenerate hyperfine manifolds. Here, we focus on the interactions of hydrogen atoms in reference states composed of an excited nD state (atom A), and in the metastable 2S state (atom B). We devote special attention to the cases n = 3 …


Long-Range Interactions For Hydrogen Atoms In Excited D States, Chandra M. Adhikari, Ulrich D. Jentschura Mar 2022

Long-Range Interactions For Hydrogen Atoms In Excited D States, Chandra M. Adhikari, Ulrich D. Jentschura

Physics Faculty Research & Creative Works

Pressure shifts inside an atomic beam are among the more theoretically challenging effects in high-precision measurements of atomic transitions. A crucial element in their theoretical analysis is the understanding of long-range interatomic interactions inside the beam. For excited reference states, the presence of quasi-degenerate states leads to additional challenges, due to the necessity to diagonalize large matrices in the quasi-degenerate hyperfine manifolds. Here, we focus on the interactions of hydrogen atoms in reference states composed of an excited nD state (atom A), and in the metastable 2S state (atom B). We devote special attention to the cases n = 3 …


Positivity And Renormalization Of Parton Densities, John Collins, Ted C. Rogers, Nobuo Sato Jan 2022

Positivity And Renormalization Of Parton Densities, John Collins, Ted C. Rogers, Nobuo Sato

Physics Faculty Publications

There have been recent debates about whether MS parton densities exactly obey positivity bounds (including the Soffer bound) and whether the bounds should be applied as a constraint on global fits to parton densities and on nonperturbative calculations. A recent paper [Candido et al., Can MS parton distributions be negative?, J. High Energy Phys. 11 (2020) 129] appears to provide a proof of positivity in contradiction with earlier work by other authors. We examine their derivation and find that its primary failure is in the apparently uncontroversial statement that bare parton density (or distribution) function (pdfs) are always …


Inverse Moment Of The B Meson Quasidistribution Amplitude, Ji Xu, Xi-Ruo Zhang, Shuai Zhao Jan 2022

Inverse Moment Of The B Meson Quasidistribution Amplitude, Ji Xu, Xi-Ruo Zhang, Shuai Zhao

Physics Faculty Publications

We perform a study on the structure of the inverse moment (IM) of quasidistributions, by taking B-meson quasidistribution amplitude (quasi-DA) as an example. Based on a one-loop calculation, we derive the renormalization group equation and velocity evolution equation for the first IM of quasi-DA. We find that, in the large velocity limit, the first IM of B-meson quasi-DA can be factorized into IM as well as logarithmic moments of light-cone distribution amplitude (LCDA), accompanied by short distance coefficients. Our results can be useful either in understanding the patterns of perturbative matching in large momentum effective theory or evaluating inverse …


Renormalization And Mixing Of Staple-Shaped Wilson Line Operators On The Lattice Revisited, Yao Ji, Jian-Hui Zhang, Shuai Zhao, Ruilin Zhu Jan 2021

Renormalization And Mixing Of Staple-Shaped Wilson Line Operators On The Lattice Revisited, Yao Ji, Jian-Hui Zhang, Shuai Zhao, Ruilin Zhu

Physics Faculty Publications

Transverse-momentum-dependent parton distribution functions and wave functions (TMDPDFs/TMDWFs) can be extracted from lattice calculations of appropriate Euclidean matrix elements of staple-shaped Wilson line operators. We investigate the mixing pattern of such operators under lattice renormalization using symmetry considerations. We perform an analysis for operators with all Dirac structures, which reveals mixings that are not present in one-loop lattice perturbation theory calculations. We also present the relevant one-loop matching in a renormalization scheme that does not introduce extra nonperturbative effects at large distances, both for the TMDPDFs and for the TMDWFs. Our results have the potential to greatly facilitate numerical calculations …


Intrinsic Transverse Momentum And Evolution In Weighted Spin Asymmetries, Jian-Wei Qiu, Ted C. Rogers, Bowen Wang Jan 2020

Intrinsic Transverse Momentum And Evolution In Weighted Spin Asymmetries, Jian-Wei Qiu, Ted C. Rogers, Bowen Wang

Physics Faculty Publications

The transverse momentum-dependent (TMD) and collinear higher twist theoretical factorization frameworks are the most frequently used approaches to describe spin-dependent hard cross sections weighted by and integrated over transverse momentum. Of particular interest is the contribution from small transverse momentum associated with the target bound state. In phenomenological applications, this contribution is often investigated using transverse momentum weighted integrals that sharply regulate the large transverse momentum contribution, for example, with Gaussian parametrizations. Since the result is a kind of hybrid of TMD and collinear (inclusive) treatments, it is important to establish if and how the formalisms are related in applications …


Large Transverse Momentum In Semi-Inclusive Deeply Inelastic Scattering Beyond Lowest Order, B. Wang, J. O. Gonzalez-Hernandez, T. C. Rogers, N. Sato Jan 2019

Large Transverse Momentum In Semi-Inclusive Deeply Inelastic Scattering Beyond Lowest Order, B. Wang, J. O. Gonzalez-Hernandez, T. C. Rogers, N. Sato

Physics Faculty Publications

Motivated by recently observed tension between O(α2s) calculations of very large transverse momentum dependence in both semi-inclusive deep inelastic scattering and Drell-Yan scattering, we repeat the details of the calculation through an O(α2s) transversely differential cross section. The results confirm earlier calculations, and provide further support to the observation that tension exists with current parton distribution and fragmentation functions.


What Are The Low-Q And Large-X Boundaries Of Collinear Qcd Factorization Theorems?, E. Moffat, W. Melnitchouk, T. C. Rogers, N. Sato May 2017

What Are The Low-Q And Large-X Boundaries Of Collinear Qcd Factorization Theorems?, E. Moffat, W. Melnitchouk, T. C. Rogers, N. Sato

Physics Faculty Publications

Familiar factorized descriptions of classic QCD processes such as deeply inelastic scattering (DIS) apply in the limit of very large hard scales, much larger than nonperturbative mass scales and other nonperturbative physical properties like intrinsic transverse momentum. Since many interesting DIS studies occur at kinematic regions where the hard scale, Q ∼ 1-2 GeV, is not very much greater than the hadron masses involved, and the Bjorken scaling variable xbj is large, xbj ≳ 0.5, it is important to examine the boundaries of the most basic factorization assumptions and assess whether improved starting points are needed. Using an …


Pion Distribution Amplitude And Quasidistributions, A. V. Radyushkin Mar 2017

Pion Distribution Amplitude And Quasidistributions, A. V. Radyushkin

Physics Faculty Publications

We extend our analysis of quasidistributions onto the pion distribution amplitude. Using the formalism of parton virtuality distribution amplitudes, we establish a connection between the pion transverse momentum dependent distribution amplitude Ψ(x, k2⊥) and the pion quasidistribution amplitude (QDA) Qπ(y, p3). We build models for the QDAs from the virtuality-distribution-amplitude-based models for soft transverse momentum dependent distribution amplitudes, and analyze the p3 dependence of the resulting QDAs. As there are many models claimed to describe the primordial shape of the pion distribution amplitude, we present the p3-evolution …


Role Of The Euclidean Signature In Lattice Calculations Of Quasidistributions And Other Nonlocal Matrix Elements, Raúl A. Briceño, Maxwell T. Hansen, Christopher J. Monahan Jan 2017

Role Of The Euclidean Signature In Lattice Calculations Of Quasidistributions And Other Nonlocal Matrix Elements, Raúl A. Briceño, Maxwell T. Hansen, Christopher J. Monahan

Physics Faculty Publications

Lattice quantum chromodynamics (QCD) provides the only known systematic, nonperturbative method for first-principles calculations of nucleon structure. However, for quantities such as light-front parton distribution functions (PDFs) and generalized parton distributions (GPDs), the restriction to Euclidean time prevents direct calculation of the desired observable. Recently, progress has been made in relating these quantities to matrix elements of spatially nonlocal, zero-time operators, referred to as quasidistributions. Still, even for these time-independent matrix elements, potential subtleties have been identified in the role of the Euclidean signature. In this work, we investigate the analytic behavior of spatially nonlocal correlation functions and demonstrate that …


Nonperturbative Evolution Of Parton Quasi-Distributions, A. V. Radyushkin Jan 2017

Nonperturbative Evolution Of Parton Quasi-Distributions, A. V. Radyushkin

Physics Faculty Publications

Using the formalism of parton virtuality distribution functions (VDFs) we establish a connection between the transverse momentum dependent distributions (TMDs) F(x,k2) and quasi-distributions (PQDs) Q(y,p3) introduced recently by X. Ji for lattice QCD extraction of parton distributions f(x). We build models for PQDs from the VDF-based models for soft TMDs, and analyze the p3 dependence of the resulting PQDs. We observe a strong nonperturbative evolution of PQDs for small and moderately large values of p3 reflecting the transverse momentum dependence of TMDs. Thus, the study of PQDs on the lattice …


Combinatorial Algorithms For Perturbation Theory And Application On Quantum Computing, Yudong Cao Dec 2016

Combinatorial Algorithms For Perturbation Theory And Application On Quantum Computing, Yudong Cao

Open Access Dissertations

Quantum computing is an emerging area between computer science and physics. Numerous problems in quantum computing involve quantum many-body interactions. This dissertation concerns the problem of simulating arbitrary quantum many-body interactions using realistic two-body interactions. To address this issue, a general class of techniques called perturbative reductions (or perturbative gadgets) is adopted from quantum complexity theory and in this dissertation these techniques are improved for experimental considerations. The idea of perturbative reduction is based on the mathematical machinery of perturbation theory in quantum physics. A central theme of this dissertation is then to analyze the combinatorial structure of the perturbation …


Pointer States Via Engineered Dissipation, Kaveh Khodjasteh, Viatcheslav V. V. Dobrovitski, Lorenza Viola Aug 2011

Pointer States Via Engineered Dissipation, Kaveh Khodjasteh, Viatcheslav V. V. Dobrovitski, Lorenza Viola

Dartmouth Scholarship

Pointer states are long-lasting high-fidelity states in open quantum systems. We show how any pure state in a non-Markovian open quantum system can be made to behave as a pointer state by suitably engineering the coupling to the environment via open-loop periodic control. Engineered pointer states are constructed as approximate fixed points of the controlled open-system dynamics, in such a way that they are guaranteed to survive over a long time with a fidelity determined by the relative precision with which the dynamics is engineered. We provide quantitative minimum-fidelity bounds by identifying symmetry and ergodicity conditions that the decoherence-inducing perturbation …


Coherent-State Transfer Via Highly Mixed Quantum Spin Chains, Paola Cappellaro, Lorenza Viola, Chandrasekhar Ramanathan Mar 2011

Coherent-State Transfer Via Highly Mixed Quantum Spin Chains, Paola Cappellaro, Lorenza Viola, Chandrasekhar Ramanathan

Dartmouth Scholarship

Spin chains have been proposed as quantum wires in many quantum-information processing architectures. Coherent transmission of quantum information in spin chains over short distances is enabled by their internal dynamics, which drives the transport of single-spin excitations in perfectly polarized chains. Given the practical challenge of preparing the chain in a pure state, we propose to use a chain that is initially in the maximally mixed state. We compare the transport properties of pure and mixed-state chains and find similarities that enable the experimental study of pure-state transfer via mixed-state chains. We also demonstrate protocols for the perfect transfer of …


Band Structures Of Layered Carbon/Boron Nitride Materials With Commensurate Lattices, Christopher C. Wells Jan 2011

Band Structures Of Layered Carbon/Boron Nitride Materials With Commensurate Lattices, Christopher C. Wells

Legacy Theses & Dissertations (2009 - 2024)

The electronic structures of systems consisting of hexagonal boron nitride layers and graphite sheets have been investigated in detail using density functional theory methods with two exchange correlation functions (local density approximation and generalized gradient approximation). The experimental data of graphene, graphite, monolayer hexagonal BN, and hexagonal BN were reproduced well with computational models. The commensurate models used in the investigation were generated by taking the averages of the lattice constants for graphite and h-BN.


Photon Impact Factor In The Next-To-Leading Order, Ian Balitsky, Giovanni A. Chirilli Jan 2011

Photon Impact Factor In The Next-To-Leading Order, Ian Balitsky, Giovanni A. Chirilli

Physics Faculty Publications

An analytic coordinate-space expression for the next-to-leading order photon impact factor for small-x deep inelastic scattering is calculated using the operator expansion in Wilson lines.


The Rotational Spectrum Of The Fed Radical In Its X4Δ State, Measured By Far-Infrared Laser Magnetic Resonance, Michael Jackson, Lyndon R. Zink, Jonathan P. Towle, Neil Riley, John M. Brown Apr 2009

The Rotational Spectrum Of The Fed Radical In Its X4Δ State, Measured By Far-Infrared Laser Magnetic Resonance, Michael Jackson, Lyndon R. Zink, Jonathan P. Towle, Neil Riley, John M. Brown

All Faculty Scholarship for the College of the Sciences

Transitions between the spin-rotational levels of the FeD radical in the v = 0level of the X 4Δ ground state have been detected by the technique of laser magnetic resonance at far-infrared wavelengths. Pure-rotational transitions have been observed for the three lowest spin components. Lambda-type doubling is resolved on all the observed transitions; nuclear hyperfine structure is not observed. The energy levels of FeD are strongly affected by the breakdown of the Born–Oppenheimer approximation and cannot be modeled accurately by an effective Hamiltonian. The data are therefore fitted to an empirical formula to yield term values and g-factors for …


Class Of Nonperturbative Configurations In Abelian-Higgs Models: Complexity From Dynamical Symmetry Breaking, M. Gleiser, J. Thorarinson Jan 2009

Class Of Nonperturbative Configurations In Abelian-Higgs Models: Complexity From Dynamical Symmetry Breaking, M. Gleiser, J. Thorarinson

Dartmouth Scholarship

We present a numerical investigation of the dynamics of symmetry breaking in both Abelian and non-Abelian [SU(2)] Higgs models in three spatial dimensions. We find a class of time-dependent, long-lived nonperturbative field configurations within the range of parameters corresponding to type-1 superconductors, that is, with vector masses (mv) larger than scalar masses (ms). We argue that these emergent nontopological configurations are related to oscillons found previously in other contexts. For the Abelian-Higgs model, our lattice implementation allows us to map the range of parameter space—the values of β=(ms/mv)2—where such configurations exist and to follow them for times t∼O(105)m−1. An investigation …


Stability Of Traveling Waves In Thin Liquid Films Driven By Gravity And Surfactant, Ellen Peterson, Michael Shearer, Thomas P. Witelski, Rachel Levy Jan 2009

Stability Of Traveling Waves In Thin Liquid Films Driven By Gravity And Surfactant, Ellen Peterson, Michael Shearer, Thomas P. Witelski, Rachel Levy

All HMC Faculty Publications and Research

A thin layer of fluid flowing down a solid planar surface has a free surface height described by a nonlinear PDE derived via the lubrication approximation from the Navier Stokes equations. For thin films, surface tension plays an important role both in providing a significant driving force and in smoothing the free surface. Surfactant molecules on the free surface tend to reduce surface tension, setting up gradients that modify the shape of the free surface. In earlier work [12, 13J a traveling wave was found in which the free surface undergoes three sharp transitions, or internal layers, and the surfactant …


Recombination Fluorescence In Ultracold Neutral Plasmas, Scott D. Bergeson, F. Robicheaux Aug 2008

Recombination Fluorescence In Ultracold Neutral Plasmas, Scott D. Bergeson, F. Robicheaux

Faculty Publications

We present the first measurements and simulations of recombination fluorescence from ultracold neutral calcium plasmas. This method probes three-body recombination at times less than 1 µs, shorter than previously published time scales. For the lowest initial electron temperatures, the recombination rate scales with the density as n22, significantly slower than the predicted n3. Recombination fluorescence opens a new diagnostic window in ultracold plasmas. In most cases it probes deeply bound level populations that depend critically on electron energetics. However, a perturbation in the calcium 4snd Rydberg series allows our fluorescence measurements to probe the population in weakly bound levels that …


Gravity-Driven Thin Liquid Films With Insoluble Surfactant: Smooth Traveling Waves, Rachel Levy, Michael Shearer, Thomas P. Witelski Dec 2007

Gravity-Driven Thin Liquid Films With Insoluble Surfactant: Smooth Traveling Waves, Rachel Levy, Michael Shearer, Thomas P. Witelski

All HMC Faculty Publications and Research

The flow of a thin layer of fluid down an inclined plane is modified by the presence of insoluble surfactant. For any finite surfactant mass, traveling waves are constructed for a system of lubrication equations describing the evolution of the free-surface fluid height and the surfactant concentration. The one-parameter family of solutions is investigated using perturbation theory with three small parameters: the coefficient of surface tension, the surfactant diffusivity, and the coefficient of the gravity-driven diffusive spreading of the fluid. When all three parameters are zero, the nonlinear PDE system is hyperbolic/degenerateparabolic, and admits traveling wave solutions in which the …


Non-Degenerate Normal-Mode Doublets In Vibrating Flat Circular Plates, Bradley M. Deutsch, Alexandra R. Robinson, Richard J. Felce, Thomas R. Moore Feb 2004

Non-Degenerate Normal-Mode Doublets In Vibrating Flat Circular Plates, Bradley M. Deutsch, Alexandra R. Robinson, Richard J. Felce, Thomas R. Moore

Student-Faculty Collaborative Research Publications

The vibrations of flat circular plates have been studied for hundreds of years, and they are well understood by the scientific community. Unfortunately, when vibrating circular plates are discussed in textbooks, the relationship between pairs of spatially orthogonal vibrational patterns that occur at each of the normal-mode frequencies is often ignored. Usually these orthogonal solutions are presented to the student as being degenerate in frequency; however, in practice the degeneracy of the doublet is often broken and the two spatially orthogonal solutions are separated in frequency. We show theoretically and experimentally that the degeneracy can be broken by a small …


Geminal Model Chemistry Ii. Perturbative Corrections, V. A. Rassolov, F. Xu, Sophya V. Garashchuk Jan 2004

Geminal Model Chemistry Ii. Perturbative Corrections, V. A. Rassolov, F. Xu, Sophya V. Garashchuk

Faculty Publications

We introduce and investigate a chemical model based on perturbative corrections to the product of singlet-type strongly orthogonal geminals wave function. Two specific points are addressed (i) Overall chemical accuracy of such a model with perturbative corrections at a leading order; (ii) Quality of strong orthogonality approximation of geminals in diverse chemical systems. We use the Epstein–Nesbet form of perturbation theory and show that its known shortcomings disappear when it is used with the reference Hamiltonian based on strongly orthogonal geminals. Application of this model to various chemical systems reveals that strongly orthogonal geminals are well suited for chemical models, …


Scattering Of Shock Waves In Qcd, Ian Balitsky Jan 2004

Scattering Of Shock Waves In Qcd, Ian Balitsky

Physics Faculty Publications

The cross section of heavy-ion collisions is represented as a double functional integral with the saddle point being the classical solution of the Yang-Mills equations with boundary conditions/sources in the form of two shock waves corresponding to the two colliding ions. I develop the expansion of this classical solution in powers of the commutator of the Wilson lines describing the colliding particles and calculate the first two terms of the expansion.


The Motion Of Cosmic Strings In The Schwarzschild Black Hole Spacetime, Sergey Roshchupkin, Yevgeniy Zinchenko Jan 2003

The Motion Of Cosmic Strings In The Schwarzschild Black Hole Spacetime, Sergey Roshchupkin, Yevgeniy Zinchenko

Turkish Journal of Physics

We study the classical dynamics of a bosonic string in the Schwarzschild spacetime using a perturbative scheme which is based on the assumption of a small value of a rescaled string tension parameter. The proposed approximation selfconsistently describes the string dynamics on the scale of large values for the worldsheet time in a fixed gauge.


Deeply Virtual Compton Scattering At Small X, Ian Balitsky, Elena Kuchina Jan 2000

Deeply Virtual Compton Scattering At Small X, Ian Balitsky, Elena Kuchina

Physics Faculty Publications

We calculate the cross section of deeply virtual Compton scattering at large energies and intermediate momentum transfers.


Time-Dependent Perturbation And Exact Results For The Periodically Driven Quantum Harmonic Oscillator, Russell Akridge Feb 1995

Time-Dependent Perturbation And Exact Results For The Periodically Driven Quantum Harmonic Oscillator, Russell Akridge

Faculty Articles

Transition amplitudes and probabilities for the harmonic oscillator with a forcing function proportional to cos(omegat) beginning at time zero are calculated to lowest nonvanishing order using time-dependent perturbation theory. The results are compared with the exact amplitudes and probabilities. When the exact amplitude is expanded in a Taylor series in powers of the coupling constant, the individual terms turn out to be the perturbation amplitudes, showing that the complete series of perturbation amplitudes converges to the exact amplitude.