Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Fiber optics

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 19 of 19

Full-Text Articles in Physics

Feature Papers In Optical Sensors 2022, Vittorio M. N. Passaro, Yuliya Semenova, Benjamin Miller Jan 2023

Feature Papers In Optical Sensors 2022, Vittorio M. N. Passaro, Yuliya Semenova, Benjamin Miller

Articles

Today, optical sensors are the subject of a very significant number of studies and applications. Many well-established technologies, including free-space optics, integrated photonics, and fiber optics approaches, have been developed in recent decades to fabricate and develop increasingly more efficient optical sensors for applications ranging from industrial control to monitoring the environment, biomedical use, and even as part of the Internet of Things.


Realization Of Bsu First Magneto-Optical Trap For The Spatial Confinement Of Rb Atoms Using Next Generation Fiber Optic Capabilities With Minimot, Brahmin Thurber-Carbone May 2021

Realization Of Bsu First Magneto-Optical Trap For The Spatial Confinement Of Rb Atoms Using Next Generation Fiber Optic Capabilities With Minimot, Brahmin Thurber-Carbone

Honors Program Theses and Projects

This paper will be a combination of my theoretical and experimental work toward Bridgewater State Universities first Magneto-Optical Trap (MOT) for laser cooling and trapping of neutral atoms in order to study fundamental quantum mechanical behavior of Rubidium (Rb) atoms. The goal of the theoretical aspect is to complete details of well-established works on how the complicated quantum, atomic, and electromagnetic (laser) interactions required to understand the design and operation of the MOT reduce to the physics and mathematics of a damped oscillator. This is made explicitly clear using familiar damped oscillator systems, such as a spring/mass/damping or pendulum/mass/damping (ie …


Fiber Optic Sensors For Industry And Military Applications, Yiyang Zhuang Jan 2021

Fiber Optic Sensors For Industry And Military Applications, Yiyang Zhuang

Doctoral Dissertations

"Fiber optic sensors (FOSs) have been widely used for measuring various physical and chemical measurands owing to their unique advantages over traditional sensors such as small size, high resolution, distributed sensing capabilities, and immunity to electromagnetic interference. This dissertation focuses on the development of robust FOSs with ultrahigh sensitivity and their applications in industry and military areas.

Firstly, novel fiber-optic extrinsic Fabry-Perot interferometer (EFPI) inclinometers for one- and two-dimensional tilt measurements with 20 nrad resolution were demonstrated. Compared to in-line fiber optic inclinometers, an extrinsic sensing motif was used in our prototype inclinometer. The variations in tilt angle of the …


High Dynamic Range Optical Devices And Applications., Elijah Robert Jensen Aug 2018

High Dynamic Range Optical Devices And Applications., Elijah Robert Jensen

Electronic Theses and Dissertations

Much of what we know about fundamental physical law and the universe derives from observations and measurements using optical methods. The passive use of the electromagnetic spectrum can be the best way of studying physical phenomenon in general with minimal disturbance of the system in the process. While for many applications ambient visible light is sufficient, light outside of the visible range may convey more information. The signals of interest are also often a small fraction of the background, and their changes occur on time scales so quickly that they are visually imperceptible. This thesis reports techniques and technologies developed …


Design And Characterization Of An Affordable Laser Communication System, Andrea Tellez Jul 2018

Design And Characterization Of An Affordable Laser Communication System, Andrea Tellez

Theses and Dissertations

Over the last decades, an exponential growth in communication demand has been observed. Radio Frequency (RF) band has been one of the most used bandwidths for data transmission in the world. Given the influence and the continuous growth of communication technology, the RF spectrum is overpopulated. More efficient systems are necessary to meet the communication needs of this generation. A change to optical bandwidth is the most practical alternative to deal with the congestion of radio frequency.

The aim of this thesis is to present the features of Free Space Optical links with off-the-shelf components. A description of how these …


Soliton Solutions Of Perturbed Nonlinear Schrodinger Equation With Kerr Lawnonlinearity Via The Modified Simple Equation Method And The Subordinarydifferential Equation Method, Singh Subhaschandra Salam Jan 2018

Soliton Solutions Of Perturbed Nonlinear Schrodinger Equation With Kerr Lawnonlinearity Via The Modified Simple Equation Method And The Subordinarydifferential Equation Method, Singh Subhaschandra Salam

Turkish Journal of Physics

The objective of this paper was to obtain soliton solutions for a perturbed nonlinear Schrodinger equation with Kerr law nonlinearity using the modified simple equation method and subordinary differential equation method. These methods appear to be efficient and they can be applied in seeking exact solutions of many other nonlinear evolution equations encountered in science and engineering studies.


Investigation Of A Novel Temperature-Sensing Mechanism Based On Strain-Induced Optical Path-Length Difference In A Multicore Optical Fiber, Belkis Gökbulut, Sema Güvenç, Mehmet Naci̇ İnci̇ Jan 2017

Investigation Of A Novel Temperature-Sensing Mechanism Based On Strain-Induced Optical Path-Length Difference In A Multicore Optical Fiber, Belkis Gökbulut, Sema Güvenç, Mehmet Naci̇ İnci̇

Turkish Journal of Physics

A four-core optical fiber is employed to investigate a novel temperature-sensing mechanism, which is based on the strain-induced optical path-length difference between the fiber core pairs. A short segment of a four-core fiber is wound around a solid stainless steel cylinder to form a tight circular loop, which is exposed to temperatures of up to 100 $^{\circ}$C. Temperature-induced radial expansion of the stainless steel cylinder causes a shear strain in the fiber and introduces an optical path-length difference between the fiber core pairs. This results in a total phase shift of about 20.40 $\pm $ 0.29 rad in the interference …


Microfiber Coupler Based Label-Free Immunosensor, Lin Bo, Christy Charlton O'Mahony, Yuliya Semenova, Niamh Gilmartin, Pengfei Wang, Gerald Farrell Apr 2014

Microfiber Coupler Based Label-Free Immunosensor, Lin Bo, Christy Charlton O'Mahony, Yuliya Semenova, Niamh Gilmartin, Pengfei Wang, Gerald Farrell

Articles

Optical microfibers and related structures which incorporate large evanescent field and minimal size offer new opportunities for biosensing applications. In this paper we report the development of an immunosensor based on a tapered microfiber coupler embedded in a low refractive index polymer. Biomolecules adsorbed on the microfiber coupler surface modify the surrounding refractive index. By immobilizing antigens on the surface of the sensing area, the microfiber coupler was able to operate as a label-free immunosensor to detect specific antibodies. We experimentally demonstrated for the first time the sensing ability of this sensor using a fibrinogen antigen-antibody pair. By monitoring the …


Spectral Engineering Of Optical Fiber Preforms Through Active Nanoparticle Doping, T. Lindstrom, E. Garber, D. Edmonson, T. Hawkins, Y. Chen, G. Turri, M. Bass, J. Ballato Nov 2012

Spectral Engineering Of Optical Fiber Preforms Through Active Nanoparticle Doping, T. Lindstrom, E. Garber, D. Edmonson, T. Hawkins, Y. Chen, G. Turri, M. Bass, J. Ballato

Publications

Europium doped alkaline earth fluoride [Eu:AEF2 (AE = Ca, Sr, Ba)] nanoparticles were synthesized and systematically incorporated into the core of modified chemical vapor deposition (MCVD)-derived silica-based preforms by solution doping. The resulting preforms were examined to determine the impact of the nanoparticles chemistry on the spectroscopic behavior of the glass. The dominant existence of Eu3+ was demonstrated in all preforms, which is in contrast to conventional solution doped preforms employing dissolved europium salts where Eu2+ is primarily observed. Raman spectroscopy and fluorescence lifetime measurements indicated that the nanoparticles composition is effective in controlling, at a local chemical and structural …


Diffusion Of Rubidium Vapor Through Hollow-Core Fibers For Gas-Phase Fiber Lasers, Eric M. Guild Mar 2011

Diffusion Of Rubidium Vapor Through Hollow-Core Fibers For Gas-Phase Fiber Lasers, Eric M. Guild

Theses and Dissertations

This work examines the diffusion of rubidium through a small diameter tube alone and in the presence of noble gases. A fluid dynamics analysis is investigated to aid in choosing a method for transferring atomic rubidium vapor that is reliable and efficient. Solutions to the time dependant ordinary differential equation describing the experimental flow properties of the system reveal more precise outcomes than previously practiced routines. Resolved viscosities and Poiseuille flow theory velocity profile distributions are characterized for noble gas carriers of the rubidium vapor. Applying Reynolds Numbers to the flow experiments provides pressure differential boundaries that are employed in …


Q-Switched And Mode Locked Short Pulses From A Diode Pumped, Yb-Doped Fiber Laser, Seth M. Swift Mar 2009

Q-Switched And Mode Locked Short Pulses From A Diode Pumped, Yb-Doped Fiber Laser, Seth M. Swift

Theses and Dissertations

A diode-pumped, ytterbium (Yb)-doped fiber laser system was designed and demonstrated to operate in continuous wave (cw), passively Q-switched and possibly passively mode locked operation. To our knowledge, this was the first fiber laser oscillator built at the Air Force Institute of Technology. A Cr4+:YAG (Chromium: Ytterbium Aluminum Garnett) crystal was used as a saturable absorber to generate Q-switched pulses. Attempts to mode lock the laser were performed using a semiconductor saturable absorber mirror (SESAM) and through nonlinear polarization rotation (NPR). The best output power result was 5 Watts (W) while pumping at 8.3 W, yielding 60% efficiency …


Stimulated Brillouin Scattering Phase Conjugation In Fiber Optic Waveguides, Steven M. Massey Aug 2008

Stimulated Brillouin Scattering Phase Conjugation In Fiber Optic Waveguides, Steven M. Massey

Theses and Dissertations

The objective of this research effort was to demonstrate the path to continuous wave, coherent beam combination through stimulated Brillouin scattering phase conjugation in optical fiber. This work experimentally determined the fiber parameters necessary for phase conjugation in step-index optical fiber. Continuous wave phase conjugation using stimulated Brillouin scattering in step-index fibers was achieved for the first time with a fidelity of 0.8 and a threshold power of 16 W in a 15-m fiber with 0.13 NA. A fidelity of 0.8 was also achieved using 40 m of fiber with 0.06-NA and a threshold power of 15 W. The fidelity …


Modeling Of Sbs Phase Conjugation In Multimode Step Index Fibers, Justin B. Spring Mar 2008

Modeling Of Sbs Phase Conjugation In Multimode Step Index Fibers, Justin B. Spring

Theses and Dissertations

Stimulated Brillouin scattering in a multimode step-index fiber can be used to generate a counter-propagating, phase-conjugate beam that would prove useful in many applications, such as near diffraction limited, double-pass high-power amplifiers or coherent beam combination. Relatively little modeling of such a fiber-based phase conjugator has been done, making design decisions regarding type and length of fiber largely guesswork. A numerical model was constructed with the aim of providing educated predictions about the phase conjugate fidelity that could be expected from a given pump intensity input coupled into a specific fiber. A numerical perturbation algorithm was constructed to search for …


Collision Broadening Using Alkali-Filled, Hollow Core Fibers, Luke P. Rodgers Oct 2007

Collision Broadening Using Alkali-Filled, Hollow Core Fibers, Luke P. Rodgers

Theses and Dissertations

The goal of this research was to demonstrate the possibility of collision broadening in a cesium-filled, hollow-core fiber as an alternative to the proven technique of pressure broadening. Theoretically, alkali electrons should relax from the 2P3/2 to the 2P1/2 level and the absorption spectrum should collisionally broaden due to the presence of fiber walls, as opposed to the more common pressure broadening method. An absorption dip located at 852.34nm was recorded in a pressure broadened comparison leg. This data was used as a baseline during analysis of the fiber leg's data. While the fiber was successfully …


Evanescent Field Absorption Sensing Using Sapphire Fibers, Michael Grossman Apr 2007

Evanescent Field Absorption Sensing Using Sapphire Fibers, Michael Grossman

USF Tampa Graduate Theses and Dissertations

This thesis explores the application of coiled sapphire multimode optical fibers for evanescent wave chemical sensing in both the visible spectrum and the near infrared. As has been suggested in the literature pertaining to silica fibers, bending converts low-order modes to high order ones, which leads to more evanescent absorption and thus a more sensitive chemical detector. By coiling the fiber many times, it was expected that even greater sensitivity would be attained.

Experiments were performed to investigate the sensor response to different solutions and to characterize this response. In the first of three experiments, the large absorption peak of …


Direct Diode Pumped Raman Amplifier Based On A Multimode Graded Index Fiberr, Charles James Baird Mar 2007

Direct Diode Pumped Raman Amplifier Based On A Multimode Graded Index Fiberr, Charles James Baird

Theses and Dissertations

The direct pumping of a Raman fiber amplifier (RFA) was attempted using an array of four 25W, fiber pigtailed diodes at 936nm, combined via a 7 channel fiber beam combiner. The initial attempt was conducted using a 1.8 km, 100 micron core, GRIN fiber with an NA of .29 and attenuation 3.6 dB/km at 936nm. While amplification was not achieved, over 200mW of conversion was shown, with 10.4W of pump power and 3.5W of seed. This corresponds to an average conversion efficiency of 2.2%. The subsequent effort utilized a 2km long, 200 micron core, GRIN fiber, with NA of .27 …


Phasing A Dual Optical Path System Using An Optical Fiber As A Phase Conjugate Mirror, Shawn M. Willis Mar 2003

Phasing A Dual Optical Path System Using An Optical Fiber As A Phase Conjugate Mirror, Shawn M. Willis

Theses and Dissertations

Phase conjugation properties of stimulated Brillouin scattering (SBS) in a short multimode fiber have been investigated with an eye towards its application for a multi-channel double pass master oscillator power amplifier (MOPA) system. In particular, properties of the SBS beam to compensate for the axial and transverse phase distortion between individual channels in a multi-channel amplifier system were studied. Two optical paths were created by covering half of the laser beam with a microscope slide, and also by spatially splitting the wavefronts with a 4 prism set-up. The Stokes beams that traversed the same optical paths as the pump beams …


Detection Sensitivity Optimization Of Optical Signals Generated By Fiber Optic Bragg Gratings Under Dynamic Excitation, John Lekki, James A. Lock Feb 2003

Detection Sensitivity Optimization Of Optical Signals Generated By Fiber Optic Bragg Gratings Under Dynamic Excitation, John Lekki, James A. Lock

Physics Faculty Publications

The dynamic response of a fiber optic Bragg grating to mechanical vibrations is examined both theoretically and experimentally. The theoretical expressions describing the consequences of changes in the grating's reflection spectrum are derived for partially coherent beams in an interferometer. The analysis is given in terms of the dominant wavelength, optical bandwidth, and optical path difference of the interfering signals. Changes in the reflection spectrum caused by a periodic stretching and compression of the grating are experimentally measured using an unbalanced Michelson interferometer, a Michelson interferometer with a nonzero optical path difference. The interferometer's sensitivity to changes in the dominant …


Laser Beam Combining And Cleanup Via Stimulated Brillouin Scattering In Multi-Mode Optical Fibers, Blake C. Rodgers Mar 1999

Laser Beam Combining And Cleanup Via Stimulated Brillouin Scattering In Multi-Mode Optical Fibers, Blake C. Rodgers

Theses and Dissertations

The main objective of this thesis was to demonstrate the feasibility of combining and cleaning up multiple laser beams via Stimulated Brillouin Scattering (SBS) in a multi-mode optical fiber. Beam combining via SBS in an optical fiber is of interest because of the low SBS threshold power in an optical fiber allowing low power diode laser beams to be combined into one high power beam. SBS theory and some of the important historical results are described briefly. The experimental results clearly indicate that SBS in multi-mode optical fiber can indeed combine laser beams and clean up the beams at the …