Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electric fields

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 31 - 46 of 46

Full-Text Articles in Physics

Simulations Of The Dipole-Dipole Interaction Between Two Spatially Separated Groups Of Rydberg Atoms, Thomas J. Carroll, Christopher Daniel, Leah Hoover, Timothy Sidie, Michael W. Noel Nov 2009

Simulations Of The Dipole-Dipole Interaction Between Two Spatially Separated Groups Of Rydberg Atoms, Thomas J. Carroll, Christopher Daniel, Leah Hoover, Timothy Sidie, Michael W. Noel

Physics and Astronomy Faculty Publications

The dipole-dipole interaction among ultracold Rydberg atoms is simulated. We examine a general interaction scheme in which two atoms excited to the x and x states are converted to y and y states via a Förster resonance. The atoms are arranged in two spatially separated groups, each consisting of only one species of atom. We monitor the state mixing by recording the fraction of atoms excited to the y state as the distance between the two groups is varied. With zero detuning a many-body effect that relies on always resonant interactions causes the state mixing to have a finite range. …


An Approach To Unification Using A Linear Systems Model For The Propagation Of Broad-Band Signals, Jonathan Blackledge Jan 2007

An Approach To Unification Using A Linear Systems Model For The Propagation Of Broad-Band Signals, Jonathan Blackledge

Articles

We review the inhomogeneous scalar Helmholtz equation in three-dimensions and the scattering of scalar wavefields from a scatterer of compact support. An asymptotic solution is then considered representing the effect of the frequency approaching zero when a ‘wavefield’ reduces to a ‘field’. The characteristics of ultra-low frequency Helmholtz scattering are then considered and the physical significance discussed of a model that is based on the scattering of Helmholtz wavefields over a broad frequency spectrum. This is equivalent to using a linear systems approach for modelling the propagation, interaction and detection of broad-band signals and provides an approach to the classification …


Many-Body Interactions In A Sample Of Ultracold Rydberg Atoms With Varying Dimensions And Densities, Thomas J. Carroll, Shubha Sunder, Michael W. Noel Mar 2006

Many-Body Interactions In A Sample Of Ultracold Rydberg Atoms With Varying Dimensions And Densities, Thomas J. Carroll, Shubha Sunder, Michael W. Noel

Physics and Astronomy Faculty Publications

Ultracold highly excited atoms in a magneto-optical trap (MOT) are strongly coupled by the dipole-dipole interaction. We have investigated the importance of many-body effects by controlling the dimensionality and density of the excited sample. We excited three different cylindrical volumes of atoms in the MOT to Rydberg states. At small radius, where the sample is nearly one-dimensional, many-body interactions are suppressed. At larger radii, the sample becomes three-dimensional and many-body effects are apparent.


Measurement Of The High-Field Q Drop In The Tm010 And Te011 Modes In A Niobium Cavity, Gianluigi Ciovati, Peter Kneisel Jan 2006

Measurement Of The High-Field Q Drop In The Tm010 And Te011 Modes In A Niobium Cavity, Gianluigi Ciovati, Peter Kneisel

Physics Faculty Publications

In the last few years superconducting radio-frequency (rf) cavities made of high-purity ( residual resistivity ratio > 200) niobium achieved accelerating gradients close to the theoretical limits. An obstacle towards achieving reproducibly higher fields is represented by "anomalous'' losses causing a sharp degradation of the cavity quality factor when the peak surface magnetic field (Bp) is above about 90 mT, in the absence of field emission. This effect, called "Q drop'' has been measured in many laboratories with single- and multicell cavities mainly in the gigahertz range. In addition, a low-temperature (100 - 140 °C) "in situ'' baking of …


Angular Dependence Of The Dipole-Dipole Interaction In A Nearly One-Dimensional Sample Of Rydberg Atoms, Thomas J. Carroll, Katharine Claringbould, Anne Goodsell, M. J. Lim, Michael W. Noel Oct 2004

Angular Dependence Of The Dipole-Dipole Interaction In A Nearly One-Dimensional Sample Of Rydberg Atoms, Thomas J. Carroll, Katharine Claringbould, Anne Goodsell, M. J. Lim, Michael W. Noel

Physics and Astronomy Faculty Publications

Atoms in an ultracold highly excited sample are strongly coupled through the dipole-dipole interaction. In an effort to understand and manipulate the complicated interactions in this system we are investigating their dependence on the relative orientation of the dipoles. By focusing a 480 nm beam from a tunable dye laser into a magneto-optical trap, we produce a nearly one-dimensional sample of Rydberg atoms. The trap lies at the center of four conducting rods with which we can vary the magnitude and direction of the electric field at the trap, thus controlling the orientation of the dipoles with respect to the …


Microscopic Analysis For Water Stressed By High Electric Fields In The Prebreakdown Regime, R. P. Joshi, J. Qian, K. H. Schoenbach, E. Schamiloglu Jan 2004

Microscopic Analysis For Water Stressed By High Electric Fields In The Prebreakdown Regime, R. P. Joshi, J. Qian, K. H. Schoenbach, E. Schamiloglu

Bioelectrics Publications

Analysis of the electrical double layer at the electrode-water interface for voltages close to the breakdown point has been carried out based on a static, Monte Carlo approach. It is shown that strong dipole realignment, ion-ion correlation, and finite-size effects can greatly modify the electric fields and local permittivity (hence, leading to optical structure) at the electrode interface. Dramatic enhancements of Schottky injection, providing a source for electronic controlled breakdown, are possible. It is also shown that large pressures associated with the Maxwell stress tensor would be created at the electrode boundaries. Our results depend on the ionic density, and …


Energetic Particles From Three-Dimensional Magnetic Reconnection Events In The Swarthmore Spheromak Experiment, Michael R. Brown, C. D. Cothran, Matthew J. Landreman , '03, David J. Schlossberg , '01 May 2002

Energetic Particles From Three-Dimensional Magnetic Reconnection Events In The Swarthmore Spheromak Experiment, Michael R. Brown, C. D. Cothran, Matthew J. Landreman , '03, David J. Schlossberg , '01

Physics & Astronomy Faculty Works

Measurements are presented from the Swarthmore Spheromak Experiment (SSX) [M. R. Brown, Phys. Plasmas 6, 1717 (1999)] showing a population of superthermal, super-Alfvénic ions with Ē≅90 eV and Emax⩾200 eV accelerated by reconnection activity in three-dimensional magnetic structures. These energetic ions are temporally and spatially correlated with three-dimensional magnetic reconnection events (measured with a 3D probe array) and are accelerated along the X-line normal to the local 2D plane of reconnection. In a typical SSX discharge, the peak reconnection electromotive force ℰ=vBL⩽(105 m/s)(0.05 T)(0.1 m)=500 V consistent with our observations. In addition, test particle simulations using magnetohydrodynamic (MHD) data from …


Acceleration Element For Femtosecond Electron Pulse Compression, Bao-Liang Qian, Hani E. Elsayed-Ali Jan 2002

Acceleration Element For Femtosecond Electron Pulse Compression, Bao-Liang Qian, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

An acceleration element is proposed for compressing the electron pulse duration in a femtosecond photoelectron gun. The element is a compact metal cavity with curved-shaped walls. An external voltage is applied to the cavity where a special electric field forms in such a way that the slow electrons in the electron pulse front are accelerated more than the fast electrons, and consequently the electron pulse duration will be compressed. The distribution of the electric field inside the acceleration cavity is analyzed for the geometry of the cavity. The electron dynamics in this acceleration cavity is also investigated numerically. Numerical results …


Pulsed Electron Heating Of Atmospheric Pressure Air Glow Discharges, Hisham Merhi Jul 2001

Pulsed Electron Heating Of Atmospheric Pressure Air Glow Discharges, Hisham Merhi

Electrical & Computer Engineering Theses & Dissertations

By applying electric field pulses of short duration (compared to the time constant for glow-to-arc transitions) to a weakly ionized gas, the electron energy distribution can be temporarily shifted to higher energies. This effect causes a nonlinear increase in the ionization rate and consequently a larger electron decay time. This effect has been demonstrated using single pulse operation.3 In order to generate plasma with semi-continuous electron density, repetitive operation is required. As a first step towards repetitive pulsed electric field operation, the temporal development of the voltage across the plasma for two subsequent pulses was measured. The dual pulse …


Seasonal And Magnetic Activity Variations Of Ionospheric Electric Fields Above The Southernmid-Latitude Station, Bundoora, Australia, M. L. Parkinson, R. Polglase, Bela G. Fejer, L. Scherliess, P. L. Dyson, S. M. Ujmaia Jan 2001

Seasonal And Magnetic Activity Variations Of Ionospheric Electric Fields Above The Southernmid-Latitude Station, Bundoora, Australia, M. L. Parkinson, R. Polglase, Bela G. Fejer, L. Scherliess, P. L. Dyson, S. M. Ujmaia

Bela G. Fejer

We investigate the seasonal, local solar time, and geomagnetic activity variations of the average Doppler velocity measured by an HF digital ionosonde deployed at Bundoora, Australia. The Doppler velocities were heavily averaged to suppress the short-term effects (<3>hours) of atmospheric gravity waves, and thereby obtain the diurnal variations attributed to the tidally-driven ionospheric dynamo and electric fields generated by magnetic disturbances. The observed seasonal variations in Doppler velocity were probably controlled by variations in the lower thermospheric winds and ionospheric conductivity above Bundoora and in the magnetically conjugate location. The diurnal variations of the meridional (fieldperpendicular) drifts and their …


Theoretical Studies Of Penetration Of Magnetospheric Electric Fields To The Ionosphere, Stanislav Sazykin May 2000

Theoretical Studies Of Penetration Of Magnetospheric Electric Fields To The Ionosphere, Stanislav Sazykin

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Ionospheric disturbance electric fields of magnetospheric origin play an important role in determining the global morphology and dynamics of the ionosphere of the Earth. In this work, we present a number of numerical simulations of the transient electric fields in the middle and inner magnetosphere and the ionosphere equatorward of the auroral zone caused by idealized changes in the magnetospheric driving parameters. For these studies, we use the Rice Convection Model (RCM), a large computer code of the magnetosphere-ionosphere coupling which consistently computes the electric fields, currents, and plasma densities in the magnetosphere and the electric field and currents in …


Space Charge Structure Of A Glow Discharge In The Presence Of A Longitudinal Inhomogeneity, Frank A. Tersigni Mar 1999

Space Charge Structure Of A Glow Discharge In The Presence Of A Longitudinal Inhomogeneity, Frank A. Tersigni

Theses and Dissertations

A survey of space charge structures arising due to inhomogeneities in glow discharges was conducted. Space charge structures associated with tube geometries, the cathode sheath, striations, and shockwaves were examined. Space charge effects on the Electron Energy Distribution Function (EEDF) were explored for a geometric inhomogeneity using an approximate nonlocal solution to the one dimensional Boltzmann equation after Godyak. The approximate solution partially captured qualitative aspects of space charge effects on the EEDF. Simplification of collisional effects and adaptation of an approximate electric field restricted quantitative comparisons with experimental data. It is recommended that any future analysis of space charge …


Displacement Of The Earth's Bow Shock And Magnetopause Due To An Impinging Interplanetary Shock Wave, William A. Olson Dec 1997

Displacement Of The Earth's Bow Shock And Magnetopause Due To An Impinging Interplanetary Shock Wave, William A. Olson

Theses and Dissertations

Interplanetary shock waves (ISWs) propagating through the solar wind can collide with the earth's bow shock, resulting in a series of new shocks, contact discontinuities, and rarefaction waves which interact to effectively move the bow shock and magnetopause toward the earth. A one dimensional MacCormack predictor corrector algorithm with Flux Corrected Transport (FCT) was developed to model the ISW bow shock and magnetopause interactions, and to numerically predict their propagation speeds after collision. Analytic relationships for the Mach numbers and propagation speeds of the generated shock waves and contact discontinuities were used to validate the model and to compare numerical …


Empirical Studies Of Ionospheric Electric Fields, Ludger Scherliess May 1997

Empirical Studies Of Ionospheric Electric Fields, Ludger Scherliess

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The first comprehensive study of equatorial- to mid-latitude ionospheric electric fields (plasma drifts) is presented, using extensive incoherent scatter radar measurements from Jicamarca, Arecibo, and Millstone Hill, and F-region ion drift meter data from the polar orbiting DE-2 satellite. Seasonal and solar cycle dependent empirical quiet-time electric field models from equatorial to mid latitudes are developed, which improve and extend existing climatological models. The signatures of electric field perturbations during geomagnetically disturbed periods, associated with changes in the high-latitude currents and the characteristics of storm-time dynamo electric fields driven by enhanced energy deposition into the high-latitude ionosphere, are studied. Analytical …


Temporal Development Of Electric Field Structures In Photoconductive Gaas Switches, K. H. Schoenbach, J. S. Kenney, F.E. Peterkin, R. J. Allen Jan 1993

Temporal Development Of Electric Field Structures In Photoconductive Gaas Switches, K. H. Schoenbach, J. S. Kenney, F.E. Peterkin, R. J. Allen

Bioelectrics Publications

The temporal development of the electric field distribution in semi‐insulating GaAs photoconductive switches operated in the linear and lock‐on mode has been studied. The field structure was obtained by recording a change in the absorption pattern of the switch due to the Franz–Keldysh effect at a wavelength near the band edge of GaAs. In the linear mode, a high field layer develops at the cathode contact after laser activation. With increasing applied voltage, domainlike structures become visible in the anode region and the switch transits into the lock‐on state, a permanent filamentary electrical discharge. Calibration measurements show the field intensity …


Electric Field Induced Emission As A Diagnostic Tool For Measurement Of Local Electric Field Strengths, A. N. Dharamsi, K. H. Schoenbach Jan 1991

Electric Field Induced Emission As A Diagnostic Tool For Measurement Of Local Electric Field Strengths, A. N. Dharamsi, K. H. Schoenbach

Bioelectrics Publications

The phenomenon of electric field induced (EFI) emission is examined in several diatomic and polyatomic molecules. The possibility of using this phenomenon as a diagnostic tool to measure, nonintrusively, the strength and direction of local electric fields in plasmas is discussed. An estimate of the EFI signal emitted in a typical application plasma is given. This yields a lower bound on the detector sensitivity necessary to exploit EFI emission in practical applications. It is concluded that, at present, the EFI signal could be measured by some very sensitive infrared detection schemes available. Current progress in infrared detector technology, if maintained, …