Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physics

A Solid-State Phase Camera For Advanced Gravitational Wave Detectors, Erik Muniz Dec 2021

A Solid-State Phase Camera For Advanced Gravitational Wave Detectors, Erik Muniz

Dissertations - ALL

I present a novel way of wavefront sensing using a commercially available, continuouswavetime-of- ight camera with QVGA-resolution. This CMOS phase camera is capable of sensing externally modulated light sources with frequencies up to 100 MHz. The high-spatial-resolution of the sensor, combined with our integrated control electronics, allows the camera to image power modulation index as low as -62 dBc/second/pixel. The phase camera is applicable to problems where alignment and mode-mismatch sensing is needed and suited for diagnostic and control applications in gravitationalwave detectors. Specically, I explore the use of the phase camera in sensing the beat signals due to thermal …


Construction Of A Hyperspectral Camera Using Off-The-Shelf Parts And 3d-Printed Parts, Connor Heo May 2019

Construction Of A Hyperspectral Camera Using Off-The-Shelf Parts And 3d-Printed Parts, Connor Heo

Mechanical Engineering Undergraduate Honors Theses

The Arkansas Center for Space and Planetary Sciences (ACSPS) is working together with the Mechanical Engineering Department to build a modifiable camera with 3D-printed parts and off-the-shelf parts (sourced from Edmund Optics and Amazon). The design is to be readily changeable, primarily with the 3D printed parts, as to accommodate new ideas and functionalities in the future. Ultimately, the camera should be relatively cheap while maintaining functionality for proposed use cases. Earlier versions of the design will be tested extensively and rapidly updated in the ACSPS labs with benchtop testing. This will involve subjects with both visible and infrared emissions, …


The Mechanism Of Plasma Plume Termination For Pulse Excited Plasmas In A Quartz Tube, Mingzhe Rong, Wenjie Xia, Xiaohua Wang, Zhijie Liu, Dingxin Liu, Zhihu Liang, Xiaoning Zhang, Michael G. Kong Aug 2017

The Mechanism Of Plasma Plume Termination For Pulse Excited Plasmas In A Quartz Tube, Mingzhe Rong, Wenjie Xia, Xiaohua Wang, Zhijie Liu, Dingxin Liu, Zhihu Liang, Xiaoning Zhang, Michael G. Kong

Bioelectrics Publications

Although the formation and propagation of plasma plume for atmospheric pressure plasmas have been intensively studied, how does the plasma plume terminate is still little known. In this letter, helium plasma plumes are generated in a long quartz tube by pulsed voltages and a constant gas flow. The voltages have a variable pulse width (PW) from 0.5 μs to 200 μs. It is found that the plasma plume terminates right after the falling edge of each voltage pulse when PW < 20 μs, whereas it terminates before the falling edge. When PW is larger than 30 μs, the …


The Use Of Plenoptic Cameras In Astronomy, James R. Hamilton May 2017

The Use Of Plenoptic Cameras In Astronomy, James R. Hamilton

Physics Capstone Projects

Since light-field imaging cameras are starting to become more in the world today, the question that arises is, “Could these cameras help advance the science when they are used in conjunction with telescopes and microscopes?” With their use in microscopy having been partially settled and no information about their use with telescopes, this experiment was setup to start the ascertainment of the use of light-field imaging cameras with telescopes. With the use of an older plenoptic camera, it was ascertained that a new light-field imaging camera might compare with the conventional digital camera of today.


Maximizing Precision Of Variable Star Photometry With Digital Cameras In Suburban Environments, David Hergesheimer Aug 2014

Maximizing Precision Of Variable Star Photometry With Digital Cameras In Suburban Environments, David Hergesheimer

STAR Program Research Presentations

Photometry is the measure of the brightness of an object. When making such measurements on stars, it is done is units of magnitude, which is on a logarithmic scale with a base of ~2.512. Variable star photometry using a commercially available digital camera is not going to be as accurate and precise as equipment used by astronomers, and because of the logarithmic scale of magnitude used, determining how much of an effect different error reduction strategies have is not straightforward, and is best done experimentally.

My research is conducting photometry on variable stars (changing brightness) with a digital camera, and …


Monitoring Atom Traps For Neutral Atom Quantum Computing, Taylor Shannon Mar 2014

Monitoring Atom Traps For Neutral Atom Quantum Computing, Taylor Shannon

Physics

To increase computing power for numerous practical advantages, scientists are actively researching the field of quantum computing. Neutral atom quantum computing is a promising avenue towards building a quantum computer that satisfies four of the five DiVincenzo criteria. This involves a magneto-optical trap to cool the atoms and move them to a cloud in the center of a vacuum chamber. Then laser light will be shone through an array of pinholes to trap the atoms in an array of dipole traps. In order to ensure the atoms are trapped, I have set up an imaging system that consists of a …


Telescope Assembly Alignment Simulator Performance Optimization, Joshua G. Thompson, Brian Eney, Zaheer Ali, Bob Thompson Aug 2012

Telescope Assembly Alignment Simulator Performance Optimization, Joshua G. Thompson, Brian Eney, Zaheer Ali, Bob Thompson

STAR Program Research Presentations

The Telescope Assembly Alignment Simulator (TAAS) calibrates scientific instruments (SI’s) that are installed on the Stratospheric Observatory For Infrared Astronomy (SOFIA). An SI’s accuracy is directly dependent on the consistent performance of the TAAS, which has never been fully characterized. After designing various thermal and optical experiments to identify the current unknowns of TAAS, we now have a far better grasp on how the equipment behaves.


Day/Night Band Imager For A Cubesat, Eric Stanton Jun 2012

Day/Night Band Imager For A Cubesat, Eric Stanton

Electrical Engineering

Day/Night Band (DNB) earth sensing and meteorological systems like the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) provide visible wavelength imagery 24 hours a day that is used primarily for cloud imaging in support of weather forecasting. This paper describes a compact push-broom imager that meets low light imaging requirements for DMSP OLS and the NOAA/NASA Joint Polar Satellite System (JPSS) as documented in the Integrated Operational Requirements Document [1] (IORD) including the imager design, system level concepts of operation for data collection, radiometric and spatial calibration, and data transmission to Earth. This small, lightweight imager complies with …