Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physics

Functional Magnetic Nanoparticles, James Gass Apr 2012

Functional Magnetic Nanoparticles, James Gass

USF Tampa Graduate Theses and Dissertations

Nanoparticle system research and characterization is the focal point of this research and dissertation. In the research presented here, magnetite, cobalt, and ferrite nanoparticle systems have been explored in regard to their magnetocaloric effect (MCE) properties, as well as for use in polymer composites. Both areas of study have potential applications across a wide variety of interdisciplinary fields.

Magnetite nanoparticles have been successfully dispersed in a polymer. The surface chemistry of the magnetic nanoparticle proves critical to obtaining a homogenous and well separated high density dispersion in PMMA. Theoretical studies found in the literature have indicated that surface interface energy …


Multidimensional Spectroscopy Of Semiconductor Quantum Dots, Jason Michael Bylsma Mar 2012

Multidimensional Spectroscopy Of Semiconductor Quantum Dots, Jason Michael Bylsma

USF Tampa Graduate Theses and Dissertations

The coherent properties of semiconductor nanostructures are inherently difficult to measure and one-dimensional spectroscopies are often unable to separate inhomogeneous and homogeneous linewidths. We have refined and improved a method of performing multidimensional Fourier transform spectroscopy based on four-wave

mixing (FWM) experiments in the box geometry. We have modified our system with broadband beamsplitters in all interferometer arms, high-resolution translation stages and the ability to work in reflection geometry. By improving the phase-stability of our setup and scanning pulse delays with sub-optical cycle precision, we are able to

reproduce 2DFT spectra of GaAs multiple quantum wells. With the FWM signal …


Theory And Modeling Of Graphene And Single Molecule Devices, Lyudmyla Adamska Jan 2012

Theory And Modeling Of Graphene And Single Molecule Devices, Lyudmyla Adamska

USF Tampa Graduate Theses and Dissertations

This dissertation research is focused on first principles studies of graphene and single organic molecules for nanoelectronics applications. These nanosized objects attracted considerable interest from the scientific community due to their promise to serve as building blocks of nanoelectronic devices with low power consumption, high stability, rich functionality, scalability, and unique potentials for device integration. Both graphene electronics and molecular electronics pursue the same goal by using two different approaches: top-down approach for graphene devices scaling to smaller and smaller dimensions, and bottom-up approach for single molecule devices. One of the goals of this PhD research is to apply first-principles …


Optical Detection And Classification Of Phytoplankton Taxa Through Spectral Analysis, Daniel Tyler Sensi Jan 2012

Optical Detection And Classification Of Phytoplankton Taxa Through Spectral Analysis, Daniel Tyler Sensi

USF Tampa Graduate Theses and Dissertations

Phytoplankton serve as the bottom of the marine food web and therefore play an essential role in marine ecosystems. On the other hand, coastal phytoplankton communities can adversely affect the marine ecosystem and humans. A variety of techniques have been developed to measure and study phytoplankton, including in situ methods (e.g., flow cytometry) and laboratory methods (e.g., microscopic taxonomy). These provide accurate measurements of phytoplankton taxa and concentrations, yet they are limited in space and time, and synoptic information is difficult to obtain with these techniques.

Optical remote sensing may provide complementary information for its synoptic nature, as demonstrated by …


Digital Holographic Measurement Of Nanometric Optical Excitation On Soft Matter By Optical Pressure And Photothermal Interactions, David C. Clark Jan 2012

Digital Holographic Measurement Of Nanometric Optical Excitation On Soft Matter By Optical Pressure And Photothermal Interactions, David C. Clark

USF Tampa Graduate Theses and Dissertations

In this dissertation we use digital holographic quantitative phase microscopy to observe and measure phase-only structures due to induced photothermal interactions and nanoscopic structures produced by photomechanical interactions. Our use of the angular spectrum method combined with off-axis digital holography allows for the successful hologram acquisition and processing necessary to view these phenomena with nanometric and, in many cases, subnanometric precision. We show through applications that this has significance in metrology of bulk fluid and interfacial properties.

Our accurate quantitative phase mapping of the optically induced thermal lens in media leads to improved measurement of the absorption coefficient over existing …


Development Of Materials And Structures For P-Type Contacts In Cdte Solar Cells, Dino Ferizovic Jan 2012

Development Of Materials And Structures For P-Type Contacts In Cdte Solar Cells, Dino Ferizovic

USF Tampa Graduate Theses and Dissertations

Solar cells based on CdTe absorbers are attractive due to the optimal direct band gap energy and large absorption coefficient of CdTe, however, their performance and commercialization is hindered by the lack of reliable p-type contacts. CdTe has a low carrier concentration and a large electron affinity, which results in a requirement of non-realistic work functions for metals to be used as back contacts in the solar cell. Even noble metals such as Ag present a significantly large potential barrier for holes, thereby reducing the hole current through the semiconductor/metal interface. Several attempts to resolve this challenge have been …


Graphene Casimir Interactions And Some Possible Applications, Anh Duc Phan Jan 2012

Graphene Casimir Interactions And Some Possible Applications, Anh Duc Phan

USF Tampa Graduate Theses and Dissertations

Scientific development requires profound understandings of micromechanical and nanomechanical systems (MEMS/NEMS) due to their applications not only in the technological world, but also for scientific understanding. At the micro- or nano-scale, when two objects are brought close together, the existence of stiction or adhesion is inevitable and plays an important role in the behavior operation of these systems. Such effects are due to surface dispersion forces, such as the van der Waals or Casimir interactions. The scientific understanding of these forces is particularly important for low-dimensional materials. In addition, the discovery of materials, such as graphitic systems has provided opportunities …


Development Of Interatomic Potentials For Large Scale Molecular Dynamics Simulations Of Carbon Materials Under Extreme Conditions, Romain Perriot Jan 2012

Development Of Interatomic Potentials For Large Scale Molecular Dynamics Simulations Of Carbon Materials Under Extreme Conditions, Romain Perriot

USF Tampa Graduate Theses and Dissertations

The goal of this PhD research project is to devise a robust interatomic potential for large scale molecular dynamics simulations of carbon materials under extreme conditions. This screened-environment dependent reactive empirical bond order potential (SED-REBO) is specifically designed to describe carbon materials under extreme compressive or tensile stresses. Based on the original REBO potential by Brenner and co workers, SED-REBO includes reparametrized pairwise interaction terms and a new screening term, which serves the role of a variable cutoff. The SED-REBO potential overcomes the deficiencies found with the most commonly used interatomic potentials for carbon: the appearance of artificial forces due …


Growth And Characterization Of Functional Nanoparticulate Films By A Microwave Plasma-Assisted Spray Deposition Process, Ted Wangensteen Jan 2012

Growth And Characterization Of Functional Nanoparticulate Films By A Microwave Plasma-Assisted Spray Deposition Process, Ted Wangensteen

USF Tampa Graduate Theses and Dissertations

Nanoparticle and nanoparticulate films have been grown by a unique approach combining a microwave and nebulized droplets where the concentration and thus the resulting particle size can be controlled. The goal of such a scalable approach was to achieve it with the least number of steps, and without using expensive high purity chemicals or the precautions necessary to work with such chemicals. This approach was developed as a result of first using a laser unsuccessfully to achieve the desired films and particles. Some problems with the laser approach for growing desired films were solved by substituting the higher energy microwave …


Properties Of Ferroelectric Perovskite Structures Under Non-Equilibrium Conditions, Qingteng Zhang Jan 2012

Properties Of Ferroelectric Perovskite Structures Under Non-Equilibrium Conditions, Qingteng Zhang

USF Tampa Graduate Theses and Dissertations

Ferroelectric materials have received lots of attention thanks to their intriguing properties such as the piezoelectric and pyroelectric effects, as well as the large dielectric constants and the spontaneous polarization which can potentially be used for information storage. In particular, perovskite crystal has a very simple unit cell structure yet a very rich phase transition diagram, which makes it one of the most intensively studied ferroelectric materials. In this dissertation, we use effective Hamiltonian, a first-principles-based computational technique to study the finite-temperature properties of ferroelectric perovskites. We studied temperature-graded

(BaxSr1-x )TiO3 (BST) bulk alloys as well as the dynamics of …